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Preface

The present volume contains the text of lectures given at the 18th Chris Engelbrecht
Summer School in Theoretical Physics on Theoretical Foundations of Quantum
Information Processing and Communication. The Summer School was held in Salt
Rock on the Dolphin Coast of KwaZulu-Natal from 14 to 24 January 2007. It was
organized under the auspices of the South African National Institute for Theoretical
Physics (NITheP) and the National Research Foundation (NRF).

The School was intended to stimulate the interest of an upcoming new generation
of South African students to the emerging field of Quantum Information Process-
ing and Communication (QIPC). Topics that are not usually covered in traditional
undergraduate courses were presented in nine lectures. All lectures are essentially
self-contained and at a level that should be very useful to introduce post-graduate
students to the subject. Some are at an introductory level while others describe some
recent developments and results in their field of specialization.

Here is a very brief description of the contents of the nine contributions.
The first contribution by Mark Fannes introduces the conceptual and mathe-

matical framework of quantum mechanics, stressing the uniformity in the descrip-
tion of the classical and the quantum world. In order to avoid too many techni-
cal complications the authors present the case of finite-dimensional state spaces
only which is sufficient for many aspects of QIPC. Thus we learn about the com-
mon and the distinguishing features of the classical and the quantum harmonic
oscillator, about observables and states of a quantum system and how compos-
ite quantum systems are described. Finally the dynamics of a quantum system
and its mathematical realization is explained, as well as the description of (ideal)
measurements and the importance of completely positive maps for open quantum
systems.

The basic idea of the contribution by Bassano Vacchini is that quantum mechan-
ics can naturally be seen as a probability theory (significantly different from clas-
sical probability) rather than as an extension of classical mechanics. Accordingly
the contribution starts with a brief description of quantum probability. In this way
we learn about the statistics of an experiment, about states as preparation pro-
cedures, observables as registration procedures, and the description of the statis-
tics of outcomes. Then position and momentum observables are introduced as
projection operator-valued measures (POVMs) which are characterized by their
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covariance properties with respect to the isochronous Galileo group. Mappings
describing state transformations are considered with respect to the general con-
straints and their covariance properties with respect to symmetry groups. In particu-
lar different master equations are analyzed in this way. This is done explicitly for the
damped harmonic oscillator, the two-level quantum system, and quantum Brownian
motion. Finally, translation-covariant mappings for the description of dissipation
and decoherence are discussed, concentrating on the example of the quantum linear
Boltzmann equation and the unified description of quite different coherence experi-
ments in terms of Lévy processes.

The purpose of the contribution by Robert Alicki is to present a general formal-
ism based on first principles Hamiltonian models which can be used to describe
mathematically and estimate numerically the influence of an environmental noise
on quantum devices controlled by time-dependent external forces. Such systems
are called controlled quantum open systems (CQOS). The basic idea is to elimi-
nate the degrees of freedom of the environment and use approximative expressions
for the reduced dynamics of the quantum system (which might be considered as
a device used in QIPC). The main problem is related to the existence of multiple
time scales in such models which makes the reduced dynamics very complicated.
This necessitates the restriction to subdomains of the parameter domain and to use
approximations. Several concrete cases are discussed. At first the author considers
the Markov approximation for the case of a time-independent controlling Hamil-
tonian which leads to the formalism of completely positive quantum dynamical
semi-groups with Lindblad–Gorini–Kossakowski–Sudarshan (LGKS) generators.
Next the case of slowly varying external forces is considered which also leads to
a time-inhomogeneous Markov Master equation of LGKS type. Finally, the non-
Markovian Born approximation and the corresponding error formula are presented.
This case is illustrated by a generic model of the controlled spin-boson system which
in turn can be applied to several implementations of controlled qubits.

The contribution by Sugato Bose investigates how and when complex many-body
quantum systems can be used in quantum information applications, in particular in
quantum computing, with the motivation that an (ideal) quantum computer itself is
the ultimate example of an engineered and controllable many-body quantum system.
The first part describes the relevant notions of quantum information, i.e., quantum
entanglement and its quantification in terms of concurrence, fidelity, and the opera-
tions needed for building a quantum computer, and concludes with the description
of many-body spin systems as examples. Then it is examined whether many-body
quantum systems can actually serve as a resource for truly “quantum” correlations or
entanglement. The next part studies the possibility of using spin chains as channels
for quantum communication. Here we learn first about a simple spin chain quan-
tum communication protocol, then about a formula for the fidelity of this protocol
and an estimate of its performance. This part ends with a discussion of how entan-
glement can be transmitted effectively in this context. The next lecture describes
the various methods that have been suggested to perfect communication schemes
which use spin chains, i.e., engineering the coupling in a spin chain, encoding in
many-spin states, coupling qubits weakly to quantum many body systems, dual-rail
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encoding and heralded perfect transfer, and controllable coupling of a memory qubit
at the end of the transfer. The last lecture discusses two of the many proposals for
quantum computation using many-body systems: quantum computation using a one-
dimensional Heisenberg chain and realizing logic gates through engineered XY spin
chains.

Heinz-Peter Breuer contributed an overview of efficient methods for the descrip-
tion of the non-Markovian dynamics of open quantum systems. The theoretical
description of quantum mechanical relaxation and decoherence processes often
leads to a non-Markovian dynamics which is determined by pronounced mem-
ory effects. This contribution reviews the systematic approach to non-Markovian
dynamics which is known as projection operator technique. Accordingly, in the first
part the standard operator method is described, recalling in particular Nakajima-
Zwanzig and the time-convolution projection operator technique as well as the
Markovian approximation of quantum dynamical semi-groups. The second part
introduces quite a general class of projection super-operators that project onto cor-
related system-environment states and are therefore able to describe strong correla-
tions and non-Markovian effects. In the last part, for the case of classically corre-
lated projection super-operators, the non-Markovian generalization of the standard
Lindblad equation is derived and some applications of this equation to models with
pronounced non-Markovian effects are indicated.

The contribution by Beatrix Hiesmayr aims at showing that particle physics
also contributes substantially to answering fundamental questions about quantum
mechanics as used in QIPC, the main point being that this testing is done at scales
of energies not available for usual quantum systems. The contribution focuses on
the massive meson–antimeson system (K-mesons or Kaons) to describe testing of
the foundations of quantum mechanics (QM), i.e., local realistic theories versus
QM, Bell inequalities, quantum marking and eraser concepts, Bohr’s complemen-
tary relations, and testing of some fundamental aspects of particle physics, i.e.,
CP-violation, CPT-violation. In particular, answers to the following three groups
of questions are discussed. (1) Bell’s inequality: Can one find experimental setups
for testing local realistic theories versus QM? What has symmetry violation in
particle physics to do with nonlocality? (2) Quantum erasers: Is “erasing the past
and impacting the future” possible with K-mesons? Are there new eraser options
which can be realized in the (near) future? Decoherence and loss of entanglement:
Decoherence models for mesons? How do mesons “loose” certain quantum fea-
tures, e.g., entanglement and how can this be measured? The constructive answers
to all these questions are prepared by providing detailed background information
and the important answer to one of these fundamental questions is that exper-
iments confirm that “spooky action at a distance” takes place in the K-meson
system.

Pieter Kok introduces the topical subject of optical quantum computing. This
contribution thus focuses on an alternative approach to quantum computing as
described by Sugato Bose. This is important since at the moment it is not yet
known which physical system is best suited for making a quantum computer. This
contribution explains some of the many proposals for using light for quantum com-
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puting, concentrating on the cases of photonic qubits and leaving out the case of
optical field states (continuous variables). Two cases of optical quantum computing
are described: linear optical quantum computing using matter qubits and photons
and quantum computing using optical nonlinearities (Kerr nonlinearities and Zeno
gates). Three introductory sections introduce all the necessary concepts and devices
and their theoretical description which are used in optical quantum computing. Thus
in particular we learn about photons as qubits, phase shifts, (polarizing) beam split-
ters, interferometers, gates, the Knill, Laflamme, Milburn (KLM) approach, two-
photon interference, circuits, clusters, engineering of clusters (with fusion gates)
and complete quantum computer architecture.

Shigeaki Nagamachi describes teleportation of continuous quantum variables in
full analogy to teleportation of qubits. In order to achieve this, the scheme of the
experimental setup and the decisive steps of the basic experiments are discussed for
both teleportation of qubits and teleportation of continuous quantum variables. In
order to enable this analogy to come out fully, the author describes teleportation
of continuous quantum variables not in terms of Wigner functions as all previous
theoretical treatments do, but develops a mathematical description of the experimen-
tal devices which implement the teleportation in terms of the Bargmann (or holo-
morphic) representation of the canonical commutations relations. This step involves
naturally some concepts and results of quantum mechanics on infinite-dimensional
state spaces which in part is somewhat technical. In order to separate theory and
technique, the mathematical proofs respectively calculations are presented in an
appendix. Teleportation in a strict sense includes naturally the localization of the
objects to be teleported. Accordingly this contribution concludes with a brief dis-
cussion of localization/locality aspect in teleportation.

The contribution by Daniel Terno looks beyond present day QIPC in so far as
the basic steps of quantum information theory are introduced and discussed in the
context of special relativity which faces some additional challenges. At first we
learn about the causality constraints on quantum measurements and their descrip-
tion and the implications of these constraints in the realization of standard quantum
information protocols. Naturally, in a relativistic context, some basic knowledge of
the Poincaré group (semi-direct product of the space-time translation group with
the isochronous proper Lorentz group) and its representations are needed which are
developed in the second part of the contribution both for the case of massive particles
and for photons. The next section discusses the effects of quantum Lorentz trans-
formations on the basic ingredients of quantum information theory, i.e., reduced
density matrices, massive qubits and photonic qubits. The effects of the constraints
of Lorentz covariance on quantum communication channels is presented next. The
following section explains, for the case of two-particle states, some of the difficulties
one encounters when entanglement is to be detected in different Lorentz frames; for
a proper analysis of these difficult questions it seems necessary to involve field the-
ory to which this section refers. The final part of this contribution gives an overview
of some recent developments which look beyond special relativity, in particular at
problems involving (relativistic quantum) field theory and taking gravitation into
account.



Preface ix

We would like to thank all contributors for the very interesting lectures and for
spending much time discussing with the students at the School. Also, we would
like to thank the junior members of the Quantum Research Group at the University
of KwaZulu-Natal for helping out with the practical organization of the summer
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An Introduction to Quantum Probability

Mark Fannes

Using quantum mechanical devices for handling information is not a recent pro-
posal. Recent experimental progress has, however, narrowed the gap with reality,
even if there is still a very long way to go in order to achieve the most far-stretching
proposals. Modern techniques now really allow to handle very small systems—
the paradigms of the Gedankenexperimente in the standard textbooks on quantum
mechanics—in an increasingly controlled manner. Because of the counter-intuitive
aspects of quantum mechanics, experimental and theoretical aspects have to be
developed more or less simultaneously, certainly in order to build complex systems.
The renewed interest in theoretical and mathematical aspects of quantum theory is
then a natural consequence.

Within the context of information, quantum mechanical devices for secure com-
munication are already commercially available, but implementing the spectacular
quantum algorithms seems still a very long-term perspective. To this end one has to
exploit the typical quantum assets such as superposing states and efficiently use the
unitary dynamics for composite systems with many parties. Randomizing influences
of the environment tend to make large systems rather classical and put severe limita-
tions on what is feasible. Another very important problem is to develop techniques
for stably controlling the dynamics of such systems.

The aim of these lectures is to sketch a mathematical framework that is suffi-
ciently broad to treat both classical and quantum systems in a uniform way. A uni-
form description is indeed appropriate; it is after all important to compare classical
and quantum aspects of physical systems and to understand to what extent typical
quantum features are relevant. These lectures will be on a low mathematical level,
essentially finite dimensional. This suffices to introduce the relevant concepts and
terminology. The main mathematical tools stem from linear algebra. Most results
have, at some technical expense, natural extensions both to the case of standard
quantum mechanics on separable Hilbert spaces and to the theory of systems with

M. Fannes (B)
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2 M. Fannes

an infinite number of degrees of freedoms which are studied in statistical mechanics
or field theory. Many references at various levels of technicality can be found in,
e.g. [1–5].

1 Motivation

Standard courses on classical mechanics and quantum mechanics look quite dif-
ferent. There are hardly common terms in both subjects. Textbooks on classical
mechanics often concentrate on the different formulations of the theory: Newton’s
laws, the Lagrangian formalism, Hamilton’s equations of motion, etc. A number of
rather exceptional but important examples are analysed, such as the harmonic oscil-
lator, Kepler’s problem and the motion of the top. Some more recent texts consider
stability issues and chaos. Many textbooks on quantum mechanics on the other hand
put a lot of emphasis on wave mechanics solving, e.g. the stationary Schrödinger
equation for a number of models. The quantum mechanical formalism is then pre-
sented, often in a not so precise mathematical way, in terms of operators, com-
mutators, eigenfunctions and eigenvalues. The connection with classical mechanics
is usually rather thin, mainly the correspondence principle and Ehrenfest’s theorem.
However, R. Finkelstein in his book Nonrelativistic Mechanics (Benjamin, Reading,
MA, 1973) treats classical and quantum mechanics in parallel.

One of the aims of these lectures is to present a probabilistic model that allows
to describe both the classical and the quantum theory. The main ingredients are
the observables which define the kinematical structure of the system—what are
the components of our system—and the states which should allow us to reproduce
or predict the measurements on the system given a certain preparation procedure.
Finally we also need the dynamics which describes how a system changes in time
either due to its natural evolution or through the actions of an external agent. In order
to make the comments above a bit more concrete we consider the basic example of
a harmonic oscillator.

1.1 The Classical Harmonic Oscillator

The most basic oscillator is just a one-dimensional mass and spring system: a point
particle of unit mass is attached to one end of an ideal spring of unit stiffness while
the other end of the spring is attached to the origin. Pulling the mass away from
the origin requires some work against the spring and increases therefore the poten-
tial energy of the mass and spring system. The mass, after being released, returns
towards the origin and acquires some velocity which means that potential energy has
been converted into kinetic energy. When it crosses the origin all potential energy
has been converted into kinetic energy. The mass now moves away from the ori-
gin, gradually transferring its kinetic energy to the spring until it stands still having
completed half a period of an oscillation. Without friction this periodic exchange
between potential and kinetic energies goes on for ever; this is periodic motion.
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The motion is governed by a single ordinary linear differential equation of the
second order:

d2x

dt2
+ x = 0 . (1)

Here x is the position of the point particle in Cartesian coordinates; it is a function
of a variable t which is proportional to the time. The general solution of (1) is

x(t) = A sin t + B cos t .

The two integration constants A and B have to be adjusted by imposing suitable
initial conditions. We could, e.g., specify the total energy of the system and the
initial position.

The total energy E is the sum of the potential energy

V (x) = 1

2
x2

of the spring and the kinetic energy

T = 1

2

(dx

dt

)2

of the point particle. A straightforward computation yields

E = 1

2

(
A2 + B2

)
.

Imposing that initially the mass is at the origin yields B = 0 and so

x(t) =
√

2E sin t .

1.2 The Quantum Oscillator

All the information that we can access about an isolated one-dimensional quantum
particle in an harmonic well is contained in its wave function ψ which depends in
the usual position representation on Cartesian position coordinates and time. The
evolution of ψ is governed by Schrödinger’s time-dependent equation

i�
∂ψ

∂t
= H ψ = −�

2

2

∂ 2ψ

∂x2
+ 1

2
x2 ψ . (2)

To obtain a unique solution we must specify the full knowledge about the particle
at t = 0, i.e. ψ(x, 0) = ψ0(x). An idealized initial condition could be a Gaussian
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wave packet that minimizes Heisenberg’s uncertainty relations. In the course of time
such initial wave packets will move and typically spread both in position and in
momentum.

The solution to (2) can be computed by using the linearity of the evolution equa-
tion. We first determine the standing wave solutions

ψ(x, t) = e−iE/� ϕ(x)

by solving Schrödinger’s time-independent equation

H ϕ = −�
2

2

d2ϕ

dx2
+ 1

2
x2 ϕ = E ϕ . (3)

It turns out that (3) only admits acceptable solutions for a discrete set of values of E

En = �(n + 1
2 ), n = 0, 1, 2, . . .

with corresponding functions

ϕn(x) = 1

2n/2(n!)1/2(π�)1/4
e−x2/2� Hn

( x√
�

)
.

The function Hn is the Hermite polynomial of degree n and the normalization con-
stant is chosen in such a way that

∫ ∞
−∞

dx |ϕn(x)|2 = 1 .

In fact, any reasonable square integrable complex function ψ0 on R can be written
as an infinite linear combination of the ϕn:

ψ0 =
∞∑

n=0

〈ϕn , ψ0〉ϕn,

where

〈ϕn , ψ0〉 =
∫ ∞
−∞

dx ϕn(x)ψ0(x) .

Here ϕn(x) denotes the complex conjugate of the complex number ϕn(x). This then
yields the solution of time-dependent Schrödinger equation with initial value ψ0:

ψ(x, t) =
∞∑

n=0

〈ϕn , ψ0〉 e−iEn/� ϕn(x) .
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This computation raises a number of questions about the meaning of the frequen-
cies En/� and how to compare the quantum and classical oscillators.

1.3 Comparing Classical and Quantum Oscillators

Let us ask about the relative duration of stay ρ(x) Δx of the classical oscillating
particle of energy E in an interval of length Δx around x . For convenience we chose
E = 1/2. Because the motion is periodic, it suffices to consider half a period, e.g.

x(t) = sin t , −π

2
≤ t ≤ π

2
.

Let the particle during this half period stay for a time Δt in the Δx vicinity of x ,
then

ρ(x) Δx = 1

π
Δt ∼ 1

π

dt

dx
Δx

= 1

π cos t
Δx = 1

π
√

1− x2
Δx .

Hence ρ is a B-distribution:

ρ(x) = 1

π
√

1− x2
, −1 < x < 1 ,

see Fig. 1.
This classical probability distribution of the position can easily be compared with

its quantum counterpart. We first fix the energy of the quantum oscillator to the same
value E = 1

2

�
(
n + 1

2

) = 1
2 (4)

-1 -0.5 0.5 1

1

2

3

4

Fig. 1 Probability density of position of classical oscillator
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and let then n tend to∞. This means that we only consider energies that are much
larger than the gaps in the spectrum of the quantum Hamiltonian. The position dis-
tribution is according to the rules of quantum mechanics

ρn(x) = |ϕn(x)|2 = 1

2nn!
√
π�

e−x2/� H2
n

( x√
�

)
,

with � satisfying (4).
From Figs. 2 and 3 it appears that the density of the quantum mechanical posi-

tion distribution approaches on the average the classical density when n increases.
The typical wave-like fringes remain however and there is certainly no pointwise
convergence when n →∞. It is therefore more sensible to compare the distribution
functions, i.e., the probability of finding the particle to the left of a point:

F(x) :=
∫ x

−∞
dy ρ(y) .

-1.5 -1 -0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

Fig. 2 Probability density of position of quantum oscillator n = 10

-1.5 -1 -0.5 0.5 1 1.5

0.25

0.5

0.75

1

1.25

1.5

1.75

Fig. 3 Probability density of position of quantum oscillator n = 100
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0.4

0.6

0.8

1

Fig. 4 Distribution function of position of classical oscillator

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Fig. 5 Distribution function of position of quantum oscillator n = 100

In Figs. 4 and 5 the classical and quantum distribution functions are shown. The
graphs look very similar except for some tiny wiggles in the quantum
case.

We can draw from this example the lesson that we must compare classical
and quantum systems at the level of expectations of observables such as position.
Of course momentum would be an equally reasonable choice. We formalize this
approach in the next section.

2 Observables

A probabilistic description always involves two aspects: the objects that have a ran-
dom distribution and the actual probability distribution that assigns expectations to
these objects. We shall further on rather use the terms observables and states.
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The set A of observables of a physical system should specify its kinemati-
cal properties: Which particles are involved? What is their nature? What are the
geometrical constraints? The following general assumptions lead to a workable
model.

1. A is a complex algebra. This means that we can add and multiply observables
and rescale them with complex scalars. These operations satisfy usual properties
such as

A(B + α C) = AB + α AC , A, B,C ∈ A, α ∈ C,

but the algebra product is generally non-commutative, i.e., we do not necessarily
have AB = B A. We assume also that A has an identity, denoted by 1. This
algebraic structure allows us to construct sufficiently many functions of observ-
ables. This is important because we want to model more than the average of
an observable, also its variance, skewness, etc. The algebra must be complex to
handle quantum systems where i always appears somewhere. Think, e.g., about
the following common expressions in quantum mechanics:

i
dψ

dt
= H ψ, [P, Q] = −i�, [Lx , L y] = i�Lz .

If we only deal with classical systems, then a real algebra suffices.
2. We need an adjoint operation A→ A∗ on A to distinguish real observables:

(
A∗
)∗ = A , (A + α B)∗ = A∗ + α B∗, (AB)∗ = B∗A∗.

3. We need a notion of positivity to give a meaning to expressions like “the energy
is bounded from below”. This is tightly connected to a specific kind of norm,
called a C*-norm. For A, B ∈ A and α ∈ C,

‖A‖ ≥ 0 , ‖A‖ = 0iffA = 0 , ‖A + B‖ ≤ ‖A‖ + ‖B‖
‖AB‖ ≤ ‖A‖‖B‖ , ‖αA‖ = |α| ‖A‖
‖A∗‖ = ‖A‖ , ‖A∗A‖ = ‖A‖2 (C∗ − property).

These abstract properties single out a class of algebras that very naturally con-
nects both with classical probability and with the Hilbert space formulation of
quantum mechanics. If we put in the technical requirement that A is complete
w.r.t. the norm, then we have a C*-algebra at our disposal.
There are several equivalent definitions of positivity in a C*-algebra, the sim-
plest one being A is positive if it is of the form B∗B. The following results link
positivity and norm:

A = B∗B iff A = A∗and
∥∥‖A‖1− A

∥∥ ≤ ‖A‖ ,
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and conversely

‖A‖2 = min{λ ∈ R | λ1− A∗A ≥ 0} .

2.1 Examples

Example 1 The continuous complex functions CC
(
(0, 1)

)
on (0, 1) equipped with

point wise operations is a commutative algebra. The natural adjoint operation and
the norm are given by

f ∗(x) := f (x) and ‖ f ‖ := max{| f (x)| : x ∈ (0, 1)} .

As a uniform limit of continuous functions on (0, 1) is still continuous CC
(
(0, 1)

)
is

complete.

Example 2 The continuous linear transformations B(H) of a Hilbert space H with
composition as algebra product is an algebra. It comes with the adjoint and norm

A∗ := A† and ‖A‖ := sup{‖A ϕ‖ : ϕ ∈ H, ‖ϕ‖ = 1} .

In this expression A† is the Hermitian conjugate of A which is defined through the
relation

〈ϕ , A†ψ〉 = 〈A ϕ , ψ〉 .

The algebra B(H) is complete but non-commutative, at least if dim (H) > 1.

Example 3 Often algebras are defined in terms of generators and their relations, e.g.
the (“functions” on the) two-dimensional non-commutative torus. This is generated
by 1 and U and V with

UU ∗ = U ∗U = V V ∗ = V ∗V = 1 and U V = e2π iq V U . (5)

Here 0 ≤ q < 1 is called the deformation parameter. In the absence of deformation
q = 0 one shows that the resulting algebra is isomorphic to the continuous complex
functions on the usual two-dimensional torus. The basic generators U and V can be
taken as the basic periodic functions

(θ1, θ2) → eiθ1 and (θ1, θ2) → eiθ2 .

The deformed relation (5) expresses that the two angles no longer commute.

One could wonder why not to stick with B(H) or CC(Ω) where Ω is some nice
configuration or phase space of a classical system. Some systems have, to begin
with, both classical and quantum aspects at least in some approximations. Many
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systems with a large number of particles are quite complicated. It is sometimes rea-
sonable and simpler to replace them by systems with an infinite number of particles
and which model the asymptotic behaviour of many particle systems. This is known
as “taking the thermodynamic limit” in statistical mechanics or “having a property in
an asymptotic sense” in quantum information. However, Hilbert spaces as⊗NC2 are
really not uniquely defined. So there is no natural Hilbert space around and selecting
a particular realization of an infinite system might result in meaningless expressions
or computations. A careful description in terms of observables, however, survives
the thermodynamical limit and, together with the specification of a state, selects the
right Hilbert space for the infinite system.

Two basic results should be mentioned. First of all, every Abelian C*-algebra
with unit is isomorphic to the continuous complex functions on a (compact Haus-
dorff) space Ω. This is Gelfand’s theorem. Moreover, Ω is unique up to home-
omorphisms. Next, every C*-algebra with unit is isomorphic to a (norm closed)
self-adjoint sub-algebra with unit of B(H) for a suitable H.

The classification of general C*-algebras is far from complete but a lot is known
about algebras that are almost finite dimensional. This already suffices to treat many
interesting infinite systems such as spin lattice systems. We shall only consider
finite-dimensional algebras here meaning algebras that are finite dimensional if we
consider here only their vector space structure.

2.2 Matrix Algebras

This section is a brief reminder of linear algebra mainly with the purpose of intro-
ducing some notation needed further on.

The d-dimensional complex vector space Cd consists of all column vectors of
complex numbers with height d. To save space we write them as transposes of row
vectors

ϕT = (ϕ1, ϕ2, . . . , ϕd )T, ϕ j ∈ C .

Addition and scalar multiplication are componentwise and we have a natural com-
plex scalar product

〈ϕ , ψ〉 :=
d∑

j=1

ϕ j ψ j .

The canonical basis in Cd will be denoted by {e j : j = 1, 2, . . . , d} where all
entries of e j are zero except for a one on row j , obviously

ϕ =
d∑

j=1

〈e j , ϕ〉 e j .
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Linear transformations of Cd are given by square matrices of dimension d:

(A ϕ)i =
d∑

j=1

Ai j ϕ j , ϕ ∈ Cd .

Here Ai j is the entry of A on row i and column j . Adding, composing and rescaling
linear maps define the usual addition, product and rescaling of the corresponding
matrices, e.g.

(AB)i j =
d∑

k=1

Aik Bk j .

We use the notation Md for the algebra of d-dimensional complex matrices.
The Hermitian conjugate A† is easily computed using

〈ϕ , A†ψ〉 = 〈Aϕ , ψ〉 and so (A†)i j = A ji .

There are various ways to compute the norm of A:

‖A‖ = max{‖A ϕ‖ : ϕ = 1}
= largest singular value ofA

= square root of largest eigenvalue of A†A .

The same holds for checking positivity of A:

• A = A† and all eigenvalues of A are non-negative,
• there exists a B such that A = B†B,
• < ϕ, A ϕ〉 ≥ 0 for all ϕ ∈ Cd ,
• A = A† and all determinants of sub-matrices of A are non-negative,
• A = A† and all elementary symmetric invariants (Schur polynomials) of A are

non-negative.

Example 4 The positivity condition for a qubit matrix reads

[
a11 a12

a21 a22

]
≥ 0 iff a21 = a12, a11 ≥ 0and|a12|2 ≤ a11a22 .

The standard matrix units {ei j : i, j = 1, 2, . . . , d} are often useful. All entries
of the matrix ei j are zero except for a one on row i and column j . The following
properties hold:

ei j ek
 = δ jkei
, e†i j = e ji ,
∑d

j=1 e j j = 1,

∑d
i, j=1 Ai j ei j = A, tr ei j = δi j .
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2.3 Finite Dimensional Algebras of Observables

Every finite-dimensional C*-algebra A is isomorphic to a direct sum of matrix
algebras

A = ⊕ jMd j .

The elements of A can therefore be thought of as block diagonal matrices

A =

⎡
⎢⎣

A1 0 · · ·
. . .

0 · · · An

⎤
⎥⎦ , A j matrix of dimension d j .

The adjoint and norm are given by

A∗ =

⎡
⎢⎣

A†
1 0 · · ·

. . .

0 · · · A†
n

⎤
⎥⎦ and ‖A‖ = max{‖A j‖ , j}.

Moreover, a block diagonal matrix is positive iff all its entries are positive.
Some particular cases are important. If all d j are one dimensional, then A is

commutative, so it is a function on some space. The space is just the set of indices
{ j} and the values of the function are tabulated on the diagonal. This is the pure
(discrete) classical case, e.g. describing a classical register. If there is only a single
block with dimension greater than one, then we are in the pure quantum case; the
algebra just describes a qubit, qutrit, or qudit.

3 States and Convexity

A state is an expectation functional on the observables

A ∈ A → ω(A) ∈ C.

Here ω(A) is the average of the observed values of A if the system is perfectly
prepared in the state ω. Unlike for classical systems, measuring repeatedly iden-
tically prepared quantum systems will typically produce random outcomes. This
randomness is intrinsic to quantum mechanics. So ω(A) gives only the average value
of the observable A over many repeated measurements. To describe the distribution
of the outcomes we need also to know ω(A2), ω(A3), etc. The following assumptions
are essential to allow for a probabilistic interpretation of the theory:
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ω(A + α B) = ω(A)+ α ω(B), ω(1) = 1, and ω(A) ≥ 0ifA ≥ 0 .

The set of states on A or state space of A will be denoted by S(A) and (A, ω)
is called a quantum probability space, A being the random variables and ω the
probability measure.

We list a few basic inequalities for states; their proofs essentially follow from
positivity:

ω(A∗) = ω(A),

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B),

|ω(A∗B A)| ≤ ‖B‖ω(A∗A) . (6)

Example 5 Let A = CC(Ω) and ω ∈ S(A), then there is a unique probability
measure μ on Ω such that

ω( f ) =
∫

Ω

μ(dω) f (ω) .

This is known as Riesz’s representation theorem; it shows that for Abelian algebras
the notion of quantum probability space simply coincides with the usual probability
space.

3.1 States on Finite-Dimensional Algebras

Example 6 A density matrix of dimension d is a positive (semi-definite) matrix
with trace equal to one. We shall now show that every state on Md is in one-to-one
correspondence with a density matrix through

ω(A) = tr (ρ A) . (7)

That (7) defines a state on Md is rather obvious; linearity and normalization are
immediate and if A is positive, then it can be written as B∗B and

tr (ρ A) = tr (ρ B†B) = tr (B ρ B†) ≥ 0 .

The last inequality is true because B ρ B† is positive and the trace of a positive
matrix is positive.

Conversely, suppose that ω is a state on Md and consider the matrix

ρ :=
d∑

i, j=1

ω(e ji ) ei j .
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For an arbitrary matrix unit ek


tr (ρ ek
) = tr
( d∑

i, j=1

ω(ei j ) e ji

)
ek
 =

d∑
i, j=1

ω(ei j )tr (e ji ek
)

=
d∑

i, j=1

ω(ei j ) δik tr e j
 =
d∑

i, j=1

ω(ei j ) δik δ j
 = ω(ek
) .

As any matrix A is a linear combination of matrix units,

ω(A) = tr (ρ A) .

We still have to show that ρ is a density matrix. Normalization follows from ω(1) =
1 and positivity from

〈ϕ , ρ ϕ〉 = tr (ρ |ϕ〉〈ϕ|) = ω(|ϕ〉〈ϕ|) ≥ 0 .

Here |ϕ〉〈ϕ| is the usual notation for the transformation ψ → 〈ϕ , ψ〉ϕ which is
positive.

We are now able to describe a general state on a finite-dimensional algebra. Let

A = ⊕ jMd j .

Then any state ω on A is given by a set {(μ j , ρ j )} where (μ j ) is a sequence of
probabilities , i.e. μ j ≥ 0 and

∑
j μ j = 1, and where every ρ j is a density matrix

on Md j ; more precisely

ω
(
⊕ j A j

)
=
∑

j

μ j tr (ρ j A j ) .

The set {(μ j , ρ j )} is called a quantum!ensemble.

3.2 Recovering the Hilbert Space Picture

We shall now show how one can recover the usual quantum mechanical rule for
computing expectations, namely sandwiching observables between wave functions.
For the sake of simplicity we suppose that our state ω ∈ S(A) is faithful meaning
that ω(A∗A) = 0 implies A = 0. This restriction can be lifted by taking appropriate
quotients. The construction that we sketch is quite general; it goes under the name
GNS (Gelfand–Naimark–Segal representation theorem) and is unique up to unitary
isomorphism.
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First A is turned into an inner product space Hω by introducing the scalar product

〈A , B〉ω := ω(A∗B) .

We now compute using (6) and the C*-property of the norm defined by the scalar
product 〈· , ·〉ω:

‖A B‖2
ω = ω(B∗A∗AB) ≤ ‖A‖2 ω(B∗B) = ‖A‖2 ‖B‖2

ω .

This inequality implies that left multiplication

πω(A) : B → A B

is a well-defined linear transformation of the space Hω. Moreover, πω is a represen-
tation of the algebra in the linear transformations of Hω:

πω(A + α B) = πω(A)+ α πω(B),

πω(A B) = πω(A)πω(B),

πω(A∗) = πω(A)† .

Finally, putting Ωω := 1

ω(A) = 〈Ωω , πω(A) Ωω〉ω, (8)

πω(A) Ωω = Hω .

Equation (8) is the usual quantum mechanical rule for computing the expectation of
an observable. The main modification is that we have to replace A by πω(A). The
following explicit GNS construction for a state on a matrix algebra illustrates this
remark.

Example 7 Let ρ be the density matrix of dimension d and suppose that all eigenval-
ues of ρ are strictly positive. This is equivalent to asking that the state corresponding
to ρ is faithful. Write now an eigenvalue decomposition of ρ:

ρ =
d∑

j=1

ri |ϕi 〉〈ϕi | .

We explicitly choose the GNS objects as

Hω := Cd ⊗ Cd ,

Ωω :=
d∑

j=1

√
r j ϕ j ⊗ ϕ j ,

πω(A) := A ⊗ 1 .
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It is now a straightforward exercise to verify that these definitions satisfy the require-
ments of the GNS theorem. This construction shows that we can turn any state on
Md into a vector state; the price to pay is that we have to enlarge the space by intro-
ducing an ancillary space (in this case Cd ). If some of the eigenvalues of ρ are zero,
then the ancillary space can be smaller. In fact the dimension of the ancillary space
can be taken equal to the number of non-zero eigenvalues of ρ taking multiplicities
into account.

3.3 Convex Subsets of Rn

The state space of an algebra has a natural convex structure: we can mix states using
a probability vector (μ j ), meaning that

∑
j μ j ω j is again a state if all the ω j are.

For simplicity we assume that A is finite dimensional, then also S(A) is a convex
subset of a finite-dimensional real space. Moreover S(A) is bounded and closed, i.e.
compact. We briefly remind some general notions and results about such sets.

A subset K of Rn is convex if the line segments joining arbitrary pairs of points
of K lie in K. If X is an arbitrary subset of Rn , then we can form its convex hull:

Conv(X ) :=
{∑

j μ j x j : x j ∈ X and (μ j ) a probability vector
}
.

We can consider the convex boundary ∂cK of a closed and compact subset K of
Rn . It is the set of extreme points of K, namely the points k ∈ K that admit only
trivial decompositions in K. More explicitly, k is extreme if k = λk1 + (1 − λ)k2

with 0 < λ < 1 and k1, k2 ∈ K implies that k1 = k2 = k. ∂cK can be a
proper subset of the topological boundary ∂K. In Fig. 6 a compact subset of R2

is shown; the convex boundary consists of an arc and a single point, both thickly
marked.

We can now formulate two basic structural results. The theorem of Krein and
Milman states that a compact convex set K (in Rn) is the (closure of the) convex hull
of its extreme points:

K = Conv
(
∂cK
)
.

Fig. 6 A compact convex
subset of R2
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Carathéodory’s theorem states that each point of a convex compact subset of Rn is
a mixture of at most n + 1 points.

A distinguished class of convex compact subsets of Rn are the simplices charac-
terized by the property that each point of the simplex has a unique convex decom-
position in extreme points. In one dimension simplices are closed intervals, in two
dimensions triangles (see Fig. 7), in three dimensions tetrahedrons (see Fig. 8), etc.
For a simplex one typically needs the maximal number of extreme points as stated
in Carathéodory’s theorem. We now give some useful examples of convex sets and
their extreme boundaries.

Example 8 (Bistochastic matrices) A square matrix [ci j ] of dimension d is called
bistochastic if for all k and 


ck
 ≥ 0 and
d∑

i=1

ci
 =
d∑

j=1

ck j = 1 . (9)

These matrices define a particular class of Markov processes; the entry ci j specifies
the transition probability of a classical particle from the state i to the state j . Con-
ditions (9) amount to both conservation of particles and invariance of the uniform
probability distribution. Birkhoff’s theorem shows that the extreme boundary of the
bistochastic matrices is the set of permutation matrices.

Fig. 7 A simplex in R2

Fig. 8 A simplex in R3
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Example 9 (Stochastic order) Given two real sequences μ = (μ j ) and ν = (ν j ) of
length d such that

d∑
j=1

μ j =
d∑

j=1

ν j ,

μ stochastically dominates or majorizes ν, μ � ν, if for all k

max {μ j1 + · · · + μ jk : j1 < · · · < jk} ≥ max {ν j1 + · · · + ν jk : j1 < · · · < jk} .

Rado’s theorem characterizes this order relation: μ � ν iff ν is a mixture of permu-
tations of μ. This justifies that the terminology ν is more mixed than μ.

Stochastic ordering is quite useful to compare quantities like the Shannon entropies
of measures

H(μ) := −
d∑

j=1

μ j lnμ j .

From its definition H is concave:

H(λμ1 + (1− λ)μ2) ≥ λH(μ1)+ (1− λ)(μ2), 0 ≤ λ ≤ 1 .

Suppose now that μ � ν; then by Rado’s theorem ν is a mixture of permutations of
μ. As each permutation of μ has the same Shannon entropy as μ we obtain

H(ν) ≥ H(μ) .

Hence more mixed measures have a higher entropy.

Example 10 (Perturbation of eigenvalues) Let A be an Hermitian matrix with
ordered eigenvalues λA

1 ≥ · · · ≥ λA
d repeated according to multiplicity. The minimax

principle gives a variational method for computing eigenvalues

λA
k = max

{
min{〈ϕ, A ϕ〉 : ϕ ∈ K, ‖ϕ‖ = 1} : K ⊂ Cd , dim(K) = k

}
.

Suppose now that B = B∗, C = C∗ and A = B + C ; then one shows using
the mini–max principle that {λA

j − λB
j } is majorized by {λC

j } and so there exists a
bistochastic [γi j ] such that

λA
j = λB

j +
∑

i

γi j λ
C
i j . (10)

This is Lidskii’s theorem which can be used to compare the eigenvalues of A + B
with those of A and B. It is not hard to see that this result is optimal in the follow-
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ing sense: given two sequences of eigenvalues and a bistochastic matrix, matrix γ ,
we can always find Hermitian A and B whose eigenvalues coincide with the given
sequences such that the eigenvalues of C := A + B satisfy (10).

Example 11 (Unit ball in Md ) The extreme points of the unit ball in Md , i.e. of
{A ∈Md : ‖A‖ ≤ 1}, are the unitaries. By using the singular value decomposition
of a matrix we can write

A = U D V,

where U and V are unitary and D is diagonal and positive. As ‖A‖ ≤ 1 the diagonal
elements (δ j ) of D all belong to (0, 1). Any vector (δ1, . . . , δd ) with all δ j ∈ (0, 1)
is a mixture of vectors of the type (±1, . . . ,±1) and each such vector defines a
diagonal unitary. Therefore A is also a mixture of unitaries.

Conversely, suppose that a unitary U allows a convex decomposition U = λA+
(1− λ)B with A and B in the unit ball. For any vector ϕ we then write

‖ϕ‖ = ‖U ϕ‖ = ∥∥(λA + (1− λ)B)ϕ
∥∥

≤ λ‖A ϕ‖ + (1− λ)‖B ϕ‖ ≤ λ‖ϕ‖ + (1− λ)‖ϕ‖ = ‖ϕ‖ .

It follows that

‖A ϕ‖ = ‖B ϕ‖ = ‖ϕ‖

and hence both A and B have to be unitary. Finally from the strict convexity of the
norm on Cd we conclude that A = B = U .

Example 12 (Unit interval in Md ) The unit interval (0,1) in Md consists of {A ∈
Md : 0 ≤ A ≤ 1}. This convex compact set is important, e.g. for Fermionic
systems. We show that the extreme boundary consists of the projectors. Write the
eigenvalue decomposition of 0 ≤ A ≤ 1

A =
k∑

j=1

λ j Pj

with λ1 > λ2 > · · · > λk > 0. Generally k could be less than d as some eigenvalues
of A might be degenerate. We now rewrite A as follows:

A = λd (P1 + · · · + Pd )+ (λd−1 − λd )(P1 + · · · + Pd−1)

+ · · · + (λ1 − λ2)P1 + (1− λ1)0.

Hence A is a mixture of projectors.
Conversely suppose that P = 1

2 A+ 1
2 B with A and B in the unit interval. For a

vector ϕ in the range Ran(P) of the projector P , i.e. ϕ ∈ Ran(P), we have
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ϕ = P ϕ = 1
2 A ϕ + 1

2 B ϕ.

Hence A ϕ = B ϕ = ϕ by the strict convexity of the unit ball in Cn . If ϕ belongs to
the nullspace or kernel of P , i.e. ϕ ∈ Ker(P), then also ϕ ∈ Ker(A) and ϕ ∈ Ker(B)
by positivity. Hence A = B = P .

3.4 Pure and Mixed States

A state on an algebra A is called pure if it is extreme, i.e. if it cannot be decomposed
in a non-trivial way in a convex decomposition of other states. A state that is not pure
is called mixed.

Let Ω = {1, 2, . . . , d} be a finite set; then the pure states on CC(Ω) are the
degenerate or Dirac measures {δ j : j ∈ Ω}. Every probability measure μ on Ω can
be written in a unique way as

μ =
∑

j

μ j δ j .

Hence the state space of such a classical system is a simplex and a probability mea-
sure can be seen as an ensemble. Conversely, a simplex in Rd is the pure state space
of a classical register with d positions. This example is of course trivial and can be
vastly extended.

Let us now consider a discrete purely quantum system and show that the pure
states on Md are in one-to-one correspondence with the one-dimensional subspaces
of Cd , i.e. with the one-dimensional projectors on Cd . We have seen in (24) that we
may identify the state space on Md with the set of d-dimensional density matrices.
Writing the eigenvalue decomposition of a density matrix

ρ =
∑

i

ri |ϕi 〉〈ϕi |,

it follows that ρ can only be extreme if all ri = 0 except for one. This means that
ρ has to be a one-dimensional projector. Conversely, suppose that there are density
matrices ρ1 and ρ2 such that

|ϕ〉〈ϕ| = λ ρ1 + (1− λ) ρ2, with0 < λ < 1 .

Choose ψ ⊥ ϕ; then

0 = tr
(
|ϕ〉〈ϕ| |ψ〉〈ψ |

)

= λtr
(
ρ1 |ψ〉〈ψ |

)+ (1− λ) tr
(
ρ2 |ψ〉〈ψ |

)

= λ 〈ψ , ρ1 ψ〉 + (1− λ) 〈ψ , ρ2 ψ〉.

So, 〈ψ , ρi ψ〉 = 0 and therefore ρi = |ϕ〉〈ϕ|.
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The topological boundary of S(Md ) can easily be characterized as well: ρ

belongs to the boundary of the state space iff Det(ρ) = 0. Suppose first that
Det(ρ) > 0; then all eigenvalues of ρ are strictly positive. Let us now consider a
small open neighbourhood of ρ; we may in fact restrict ourselves to

{ρ + σ : σ = σ †, tr σ = 0and‖σ‖ ≤ ε} .

It follows from perturbation theory, e.g. from Lidskii’s theorem, that the eigenvalues
of ρ + σ are within distance ε from the eigenvalues of ρ and hence still positive for
ε sufficiently small. Therefore ρ belongs to the interior of the density matrices.
Suppose conversely that Det(ρ) = 0; then at least one eigenvalue of ρ is equal to
0. This implies that however small ε > 0, there always exists a σ with σ = σ †,
tr σ = 0 and ‖σ‖ ≤ ε such that ρ + σ has at least one strictly negative eigenvalue.
We have therefore shown that ρ lies on the boundary of the state space.

Let us make a parameter count to have a feeling for the size of the extreme and
topological boundaries. As a pure state on Md corresponds to a one-dimensional
subspace of Cd , we have to count how many real parameters we need to label an
arbitrary one-dimensional subspace of Cd . Such a subspace is uniquely labelled by
a vector

(
ϕ1, ϕ2, . . . , ϕd−1,

√
1− |ϕ1|2 − · · · − |ϕd−1|2

)T
.

This calls for 2d − 2 real parameters. For the topological boundary we have to
impose two real conditions on an arbitrary Hermitian matrix, namely trace one and
determinant zero. This leaves us with d2 − 2 real parameters. Except for dimension
two we have much less states in the extreme boundary than in the full boundary; this
means that the topological boundary contains many flat parts.

Example 13 (Qubit states) Although a bit misleading it is useful to examine the state
space of M2. Any element in M2 is a linear combination of the identity matrix and
the three Pauli matrices σ = (σ x , σ y, σ z):

σ x =
[

0 1
1 0

]
, σ y =

[
0 −i
i 0

]
, σ z =

[
1 0
0 −1

]
.

In particular, any matrix ρ in M2 can be written as

ρ = x01+ x · σ ,

where x0 ∈ C and x ∈ C3. If ρ is a density matrix then, because tr ρ = 1, we
have x0 = 1/2. Moreover, ρ is positive definite which implies that ρ is Hermitian,
so x ∈ R3. Finally, we still have to require that Det(ρ) ≥ 0 in order to have both
eigenvalues non-negative (we know already that the sum of the eigenvalues is equal
to one). This allows us to write that

ρ = 1
2

(
1+ r · σ )with r ∈ R3 and ‖r‖ ≤ 1 .
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We have shown that the state space of M2 is affinely isomorphic to the unit ball in
R3: the Bloch ball. This is not at all a simplex; every mixed state has infinitely many
decompositions in extreme states. The extreme and topological boundaries coincide
in this case but is a rather misleading accident. A pure state on M2 corresponds to a
point with polar angles (θ, ϕ) on the Bloch sphere, i.e. ‖r‖ = 1. The corresponding
one-dimensional subspace of C2 is spanned by the (column) vector

(
cos( 1

2 θ ), eiϕ sin( 1
2 θ )
)T

.

The structure of the state space of a finite-dimensional algebra

A = ⊕ jMd j

should by now be clear. The pure states live on one of the terms in the direct sum
and are given by a one-dimensional projector in that term.

4 Composite Systems

There is in fact nothing particular about observables and states of composite sys-
tems in itself. Quantum information is dealing with an additional structure, namely
locality. This means that several parties in the system have to be distinguishable
and that one puts restrictions on the allowed quantum operations on states, so-called
local operations.

If two parties have observables A1 and A2, then the composite system has
observables A12 = A1 ⊗ A2. The algebra A12 is generated by elementary tensors
A1 ⊗ A2 which satisfy

(
A1 + αB1

)⊗ A2 = A1 ⊗ A2 + αB1 ⊗ A2,

A1 ⊗
(

A2 + αB2
) = A1 ⊗ A2 + αA1 ⊗ B2,(

A1 ⊗ A2
)∗ = A∗1 ⊗ A∗2 .

It follows that ‖A1 ⊗ A2‖ = ‖A1‖ ‖A2‖.
For a purely classical system we have

CC(Ω1)⊗ CC(Ω2) = CC(Ω1 ×Ω2) .

So the “phase space” of a composite classical system is just the Cartesian product
of the spaces of the factors.

For a purely quantum system

Md1 ⊗Md2 =Md1d2 .
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A matrix in Md1⊗Md2 can be seen as a d1-dimensional matrix, the entries of which
are themselves d2-dimensional matrices, or conversely. Furthermore

(
⊕ jMd j

)
⊗
(
⊕kMnk

)
= ⊕ j,k

(
Md j ⊗Mnk

)
= ⊕ j,kMd j nk .

4.1 Marginals

In a composite system a subsystem is recognized by the natural embedding

A1 ↪→ A12 : A1 → A1 ⊗ 12 .

Using this embedding we obtain the marginals of states of a composite system

ω1(A1) := ω12(A1 ⊗ 12).

Here ω12 is a state on the composite system and ω1 is its marginal on the first factor.
An analogous expression defines the marginal on the second factor.

For a classical system this amounts to “integrating out” some variables in a multi-
variate distribution, e.g. if μ12 is a probability vector on Ω1 ×Ω2, then its marginal
μ1 is the probability vector

(
μ1
)

j
=
∑

k

(
μ12
)

j,k
.

For a matrix algebra A12 = Md1 ⊗Md2 let ρ12 be the density matrix defining
the state ω12. Let {e j } and { fk} be the canonical bases of Cd1 and Cd2 , then {e j ⊗ fk}
is the canonical basis of the tensor space and

ω1(A1) = ω12(A1 ⊗ 12)

= tr Cd1⊗Cd2

(
ρ12 (A1 ⊗ 12)

)

=
∑

j,k

〈e j ⊗ fk , ρ12 (A1 ⊗ 12) (e j ⊗ fk)〉

=
∑

j,k,
,m

〈e j ⊗ fk , ρ12 (e
 ⊗ fm)〉 〈e
 ⊗ fm , (A1 ⊗ 12) (e j ⊗ fk)〉

=
∑
j,k,


〈e j ⊗ fk , ρ12 (e
 ⊗ fk)〉 〈e
 , A1 e j 〉

= tr Cd1 (ρ1 A1) .

Here, ρ1 is the partial trace of ρ12 over the second space, explicitly given by
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(
ρ1
)

i, j
=

d2∑
k=1

(
ρ12
)

ik, jk
. (11)

Equation (11) is the quantum analog of integrating out a variable in a bi-variate
distribution.

Example 14 Let us work out the partial trace for d1 = d2 = 2 where the canonical
basis vectors of C2 ⊗ C2 are labelled in the standard lexicographical order:

{e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2},

ρ12 =

⎡
⎢⎢⎣

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

⎤
⎥⎥⎦ −→ ρ1 =

[
r11 + r22 r13 + r24

r31 + r42 r33 + r44

]
.

A similar operation yields ρ2. It is crucial to remark that partial trace does not pre-
serve purity; the marginal of a pure state can be very mixed. An extreme example is
given by

ρ12 = 1

2

⎡
⎢⎢⎣

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤
⎥⎥⎦ −→ ρ1 = 1

2

[
1 0
0 1

]
.

The state ρ12 is pure on M4; it is determined by the Bell state 1√
2
(|00〉+ |11〉) while

ρ1 is the completely mixed state on M2

4.2 Product States and Entanglement

A state ω12 on A1 ⊗ A2 typically generates many conditional states on A1. Take
0 ≤ P ∈ A2, then

A1 → ω12(A1 ⊗ P)

ω12(1⊗ P)

is a state on A1 and the dependence of this state on P tells us about the correlations
between the parties that are encoded in ω12.

Given two states ω1 and ω2 on A1 and A2, one can always consider the product
state ω1 ⊗ ω2 on the composite system

(
ω1 ⊗ ω2

)
(A1 ⊗ A2) := ω1(A1)ω2(A2).
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In this state there are no correlations between the subsystems; conditioning on the
second does not affect the first:

A1 →
(
ω1 ⊗ ω2

)
(A1 ⊗ P)(

ω1 ⊗ ω2
)
(1⊗ P)

= ω1(A1) .

This actually means that both subsystems are independent.
A product state is said to be separable or non-entangled. More generally, the

separable states are the convex hull of the product states

Ssep(A1 ⊗A2) = Conv
({

ω1 ⊗ ω2 : ωi ∈ S(Ai )
})

= Conv
({

ω1 ⊗ ω2 : ωi ∈ S(Ai ) and ωi pure
})

.

Studying entanglement for two or more parties has become a sub-field of research
within quantum information. One tries to find both entanglement witnesses and
entanglement quantifiers. A state on a two-party system with one of the parties
classical is always separable, so entanglement is a pure quantum notion.

4.3 The Schmidt Decomposition

There is a nice and useful way to write a normalized element η of Cd1⊗Cd2 : one can
find, generically in a unique way, a probability vector r and orthonormal families
{ϕi } and {ψk} in Cd1 and Cd2 such that

η =
∑

j

r1/2
j ϕ j ⊗ ψ j .

Suppose that the statement is true; then compute the first marginal ρ1 of the pure
state determined by η in the basis {ϕi }:

〈ϕi , ρ1 ϕ j 〉 =
∑

k

〈ϕi ⊗ ψk , η〉 〈η , ϕ j ⊗ ψk〉 = ri δi j .

This means that ρ1 is diagonal in the {ϕi } basis with the ri as eigenvalues. To prove
the Schmidt decomposition, one goes around the other way, namely diagonalizing
the marginal of the state determined by η.

Let ρ1 be the marginal of |η〉〈η| on the first party and diagonalize ρ1:

ρ1 =
∑

j

r j |ϕ j 〉〈ϕ j | . (12)

Next write

η =
∑

j

ϕ j ⊗ ψ j .
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Then

|η〉〈η| =
∑

i j

|ϕi 〉〈ϕ j | ⊗ |ψi 〉〈ψ j |,

and taking the partial trace over the second space

ρ1 =
∑

i j

〈ψ j , ψi 〉 |ϕi 〉〈ϕ j |.

Comparing this with the eigenvalue decomposition (12) we see that

〈ψ j , ψi 〉 = δi j r j .

Therefore also the {ψ j } form an orthogonal family.
The number of non-zero elements in r is called the Schmidt number of the state

η. States with Schmidt number 1 are product states and their marginals are pure and
vice versa: hence the Schmidt number characterizes entanglement of pure states,
however in a very discontinuous way. There are much nicer entanglement quantifiers
as will be explained in other lectures.

To conclude this section let us remark that in a bipartite system both marginals of
a pure state have the same eigenvalues, except for multiplicities of 0. Typically the
marginals of pure states on a d1×d2 dimensional system have min({d1, d2}) non-zero
eigenvalues. Moreover, if some marginal of a multi-partite state is pure, then the
state factorizes. Hence pure states decouple from “the rest of the world” which is
somehow logically necessary in order to treat closed quantum system without regard
to the outside world.

5 Dynamics and Measurements

For a closed quantum system two different types of dynamics should be distin-
guished. A system that is left alone will evolve according to its own unitary dynam-
ics which can in principle last for ever. Another possibility is that a measurement is
performed on the system. This will modify the system in an irreversible way and is
stochastic in nature. For open systems the situation is more complex. The system we
are interested in is coupled to an environment and the composite system can both
evolve reversibly according to a unitary evolution and be subject to a measurement.
This calls for the introduction of general quantum operations.

5.1 Unitary Dynamics

Symmetries and reversible dynamics of a closed system are given in Heisenberg
picture in terms of automorphisms of the observables, i.e. the observables move.
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An automorphism is a map γ that preserves the full algebraic structure and that is
invertible, so

γ (A B) = γ (A) γ (B), γ (A + αB) = γ (A)+ αγ (B), γ (A∗) = γ (A)∗ . (13)

As γ is invertible, also γ−1 is an automorphism. We may as well use the Schrödinger
picture where the states move:

γ ∗(ω)(A) = ω
(
γ (A)

)
.

The characteristic property of γ ∗ is now that it is an invertible affine transformation
of the state space. Such maps will preserve the purity of states, i.e. no information
is lost.

For a purely classical system automorphisms are permutations g of the configu-
ration space

γ ( f )(ε) = f (g(ε)),

while for a purely quantum system automorphisms are given by unitaries

γ (A) = U A U † .

For mixed systems blocks of the same dimension can be permuted and within blocks
unitaries can act. It is obvious that classical systems with continuous configuration
spaces allow much more interesting automorphisms.

The evolution in time of an autonomous system is given by a group of automor-
phisms {γt : t ∈ R}. Each γt is an automorphism of the observables and

γt1 ◦ γt2 = γt1+t2 .

Moreover, the maps γt depend continuously on time. Because of the group property
one can describe the γt in terms of a generator δ,

δ(A) := −i
d

dt
γt (A)

∣∣∣
t=0
= −i lim

t→0

γt (A)− A

t
. (14)

The group may be reconstructed by exponentiating the derivation

γt (A) = exp(itδ)(A) = A + itδ(A)+ (it)2

2!
δ(δ(A))+ · · · .

This means in fact that the evolution can be obtained as the solution of the following
differential equation:

d

dt
γt (A) = iδ

(
γt (A)

)
and γ0(A) = A . (15)
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Equation (15) is closely related to the Heisenberg equation of motion. The genera-
tor (14) is called a derivation because it has properties that remind one of differen-
tiation:

δ(A B) = δ(A) B + A δ(B) and δ(A∗) = −δ(A)∗ . (16)

These properties are the differential versions of (13).
There is a nice general form of a derivation on a matrix algebra in terms of a

commutator with a Hamiltonian. We begin by defining such a Hamiltonian

h := −i
∑

j

δ(e j1) e1 j .

Using the properties (16) one proves that

h = h∗ and δ(A) = [h, A] .

Indeed,

δ(1) = δ(1 ◦ 1) = δ(1)+ δ(1) = 2δ(1);

therefore δ(1) = 0. Let us now check that h = h∗.

h∗ = i
∑

j

e∗1 jδ(e j1)∗

= i
∑

j

e j1 δ(e1 j )

= iδ
(∑

j

e j1 e1 j

)
− i
∑

j

δ(e j1) e1 j

= iδ(1)− i
∑

j

δ(e j1) e1 j

= −i
∑

j

δ(e j1) e1 j

= h .

A similar computation shows that δ(A) = [h, A]; it suffices to verify the for-
mula for every matrix unit ek
. At this point one could wonder, why not use just
Hamiltonians? There is certainly an issue with infinite systems where Hamiltoni-
ans loose their meaning while derivations remain nicely defined objects. A more
down-to-earth reason is that it is useful to work on the level of linear transforma-
tions of the observables. Such linear maps are generally known as super-operators.
Later super-operators will prove useful in modelling open system dynamics. Finally,
the simple description of above can be extended to include time-dependent Hamil-
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tonians. They correspond to controlled closed systems where parameters in the
Hamiltonian can be adjusted from outside the system.

Autonomous dynamics of a finite-dimensional system is rather dull. Let us diag-
onalize the Hamiltonian h

h ϕk = εk ϕk .

Then

δ
(|ϕk〉〈ϕ
|

) = (εk − ε
) |ϕk〉〈ϕ
| .

The εk − ε
 are the Bohr frequencies of the system and

γt (A) = γt

(∑
k


〈ϕk, A ϕ
〉 |ϕk〉〈ϕ
|
)

=
∑

k


eit(εk−ε
) 〈ϕk, A ϕ
〉 |ϕk〉〈ϕ
| .

If the Bohr frequencies are commensurate, i.e. if they are multiples of some fre-
quency, then the evolution of observables will be periodic. In the more general case
the motion is only quasi-periodic, which means that it will, waiting sufficiently long,
repeat itself within any given precision. This behaviour can obviously not lead to a
randomizing behaviour where a system tends to some equilibrium situation.

5.2 Ideal von Neumann Measurements

Observing quantum systems is modelled by an action on the system from the out-
side. It is still an open problem how to include measurements within the theory. The
simplest measurements are exclusive yes–no measurements; they are irreversible
and correspond to a random intervention on the system. Let {ϕi : i ∈ I } be an
orthonormal basis with corresponding projectors Pi := |ϕi 〉〈ϕi |. The {Pi : i ∈ I }
are the von Neumann measurement operators; the index set I labels the possible
readings of the measuring apparatus. Preparing a system in a pure state ϕ and per-
forming the measurement on the system we obtain a probability distribution on the
outcome:

Prob{reading i} = |〈ϕ, ϕi 〉|2 = ‖Piϕ‖2 .

If we filter out readings with outcome in I0 ⊂ I we obtain the state

∑
i∈I0
‖Piϕ‖2 |ϕi 〉〈ϕi |∑
i∈I0
‖Piϕ‖2
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with probability
∑

i∈I0
‖Piϕ‖2. Without any filtering we still affect the system; after

going through the apparatus we no longer have a pure state but rather a mixture:

|ϕ〉〈ϕ| −→
∑
i∈I

|〈ϕi , ϕ〉|2 |ϕi 〉〈ϕi | . (17)

The transformation (17) is an example of a quantum operation.
The broader and more natural class of positive operator valued measures, POVMs,

arises by coupling a system to an auxiliary one and performing a von Neumann
measurement on the second system. Let {|i〉} be an orthonormal basis of the second
system and [Ui j ] a unitary on the composite system, the Ui j being operators of the
first system. This unitary corresponds to a global evolution of the composite system
during some time interval. Consider now an observable A of the first system, embed
it in the composite system, let it evolve for some time and filter out the reading k for
the second system. Doing so, we actually perform the operation

A → U †A ⊗ 1U

=
∑
i,k,


((
Uki
)†

A U
i

)
⊗ |k〉〈
|

→
∑

i

((
Uki
)†

A Uki

)
⊗ |k〉〈k| .

Note that, because U is unitary,

∑
i

(
Uki
)†

Uki = 1 .

In general,

{Xα : α ∈ A} with Xα ≥ 0 and
∑
α

Xα = 1

is called a POVM and it describes a generalized measurement; 〈ϕ, Xαϕ〉 is the prob-
ability of the outcome α when the system is in the state ϕ. An instrument describes
how the state is modified by the measurement. We need more than the Xα , namely
a collection of Vα such that Xα =

(
Vα

)∗
Vα . A set {Vα : α ∈ A} such that

∑
α

(
Vα

)∗
Vα = 1

is called an operational partition of unity and {(Vα

)∗
Vα : α ∈ A} its associated

POVM. An operational partition describes a quantum operation on the system, in
Heisenberg picture
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A →
∑
α

(
Vα

)∗
A Vα .

Example 15 (Joint measurement of spin 1
2 components) Let us try to measure jointly

the x and z components of a spin 1
2 system. There are four possible outcomes (±,±).

A von Neumann measurement of σ x would use the projectors { 1
2 (1± σ x )} and

similar expressions for σz . Multiplying these measurement operators { 1
4 (1±σ x )(1±

σ z)} does not yield a POVM and neither does
{{

1
2 (1± σ x ), 1

2 (1± σ z)
}}

. The most

symmetrical expression that yields a POVM is

{
1
4

(
1± σ x

√
2
± σ z

√
2

)}
.

How efficient is this for measuring σ z? Consider the eigenstate spin up of σ z , i.e.
the pure state generated by |+〉. It yields the probability measure

(〈
+ , 1

4

(
1± σ x

√
2
± σ z

√
2

)
+
〉)

on (±,±). We now compute the marginal of this measure on the σ z observable; we
get the probabilities

(
1
2

(
1± 1√

2

))
≈ (0.85, 0.15) .

So by this procedure of computing the probabilities our POVM introduces an uncer-
tainty of about 15% on the outcome for σ z .

5.3 Open Systems and Completely Positive Maps

The general idea is to concentrate on a small system which is in interaction with a
large environment but to discard all detailed information on the environment. This
can only work well if the system and the environment can easily be distinguished,
e.g. if they do not interact too strongly and if there are very different time scales
involved in the proper evolution of both separately. So one starts at t = 0 with
independent system and environment in states ω0 and τ and one is interested in

ωt,ω0 (A) := (ω0 ⊗ τ
)
(γt (A ⊗ 1)) .

The state τ is usually a relevant state of the environment, e.g. a thermal state or the
vacuum and γt describes the global evolution of system and environment. The map

ω0 → ωt,ω0
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is affine and has therefore also a Heisenberg picture version

A → Γt (A) with ωt,ω0 (A) = ω0
(
Γt (A)

)
.

Γt is called the reduced dynamics of the small system; it has in general a quite
complicated time dependence. If Γt is a semi-group then one says that the reduced
evolution is Markovian in time meaning that there are no memory effects:

Γt1 ◦ Γt2 = Γt1+t2 , t1, t2 ∈ R+ .

We can now wonder when such a Markovian behaviour can be expected. Under
which assumptions can one prove that a reduced dynamics is Markovian? This
question is answered by the theories of weak coupling and singular coupling limits.
Further questions concern the classification of Markovian semi-groups and their
generators. Fortunately, quantum operations which arise as above have an additional
property which is deeply connected with quantum mechanics, namely complete pos-
itivity. This makes the analysis of semi-groups and their generators feasible, at least
under some technical conditions. Complete positivity will be the last topic of these
lectures.

Positive maps

A linear transformation Γ : A → A that maps positive elements in positive ele-
ments is called positive, P. Sums, positive multiples and compositions of P maps are
still P. A linear map Γ : A→ A is unity preserving, UP, if Γ (1) = 1. If ω ∈ S(A)
and Γ is PUP, then

Γ ∗(ω)(A) := ω
(
Γ (A)

)

is again a state. Affine maps like Γ ∗ are called positive and state preserving, PTP.
The T comes from “trace preserving”. Γ is in Heisenberg picture while Γ ∗ is in
Schrödinger picture and the pictures are dual

Γ ∗(ω) = ω ◦ Γ .

At first glance, PTP maps exactly satisfy the requirements for general quantum
maps compatible with the probabilistic structure of quantum mechanics. They could
be used to describe general channels, i.e. black boxes that accept a state on one end
and emit a, generally distorted, state at the other:

ω −→ −→ Γ ∗(ω) .

There is, however, a fundamental problem with this: P is not robust for composing
systems.
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Example 16 (The transposition) The standard example of a map that is PUP but not
well-behaved with respect to composition is transposition

T : M2 →M2 : A → AT .

Clearly transposition is PUP but it turns out that the trivial extension

id⊗ T : M2 ⊗M2 →M2 ⊗M2 : A ⊗ B → A ⊗ BT

is no longer positive!
Order the standard product basis in C2 ⊗ C2 in the usual way

{|00〉, |01〉, |10〉, |11〉}

and let Q be the projector on 1√
2

(|00〉 + |11〉)

Q = 1

2

⎡
⎢⎢⎣

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤
⎥⎥⎦ .

The map id⊗ T acts on Q by replacing 〈00, Q 11〉 by 〈01, Q 10〉, . . .

id⊗ T(Q) = 1

2

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 1

⎤
⎥⎥⎦ ∼=

1

2

{[
1 0
0 1

]
⊕
[

0 1
1 0

]}
,

which is clearly not positive.

Completely positive maps

The example of above justifies the following definition: a linear map Γ : A → A
is completely positive, CP, if id⊗ Γ : Mn ⊗A→Mn ⊗A is P for n = 2, 3, . . ..
Sums, positive multiples and compositions of CP maps are still CP.

Example 17 (A CP map) Let A =Md , choose an arbitrary V ∈Md and put

Γ (A) := V † A V .

We claim that Γ is CP. Indeed, take X ∈Mn ⊗Md positive, then X = Y † Y for a
certain Y ∈Mn ⊗Md and
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id⊗ Γ (X ) = (1n ⊗ V †) X
(
1n ⊗ V

)

= (1n ⊗ V †) Y † Y
(
1n ⊗ V

)

= (Y 1n ⊗ V
)† (

Y 1n ⊗ V
)

≥ 0 .

A linear map Λ : Md →Md is often called a super-operator. A useful descrip-
tion of such maps is provided by the Jamiołkowski–Choi encoding. Let {ei j } be the
standard matrix units in Md , then every element of Md can be written as

A =
∑

i j

Ai j ei j .

This implies that Λ is fully determined by providing the image of every matrix unit
under Λ. A global way of doing this consists in forming the large matrix

C(Λ) :=
∑

i j

ei j ⊗Λ(ei j )

=

⎡
⎢⎣

Λ(e11) Λ(e12) · · · Λ(e1d )
...

Λ(ed1) · · · Λ(edd )

⎤
⎥⎦ ∈Md ⊗Md .

Remark that the map Λ → C(Λ) is linear and one to one so that it truly is an
encoding. C(Λ) is called the Choi matrix of Λ. Similarly,

J(Λ∗) := 1

d

∑
i j

ei j ⊗Λ∗(ei j ) ∈Md ⊗Md

is called the Jamiołkowski state of Λ∗. The name state will be justified soon.

Example 18 (Choi matrix of the identity map). Take Λ = id, then

C(id) =
∑

i j

ei j ⊗ ei j

=
∑

i j

|ei 〉〈e j | ⊗ |ei 〉〈e j |

=
∣∣∣
∑

i

ei ⊗ ei

〉 〈∑
j

e j ⊗ e j

∣∣∣ .

This is, up to a factor d, the projector on a maximally entangled state. In particular
C(Λ) is positive.

Choi’s theorem characterizes the CP maps in terms of their encoding: Λ : Md →
Md is CP iff C(Λ) is positive. If this is the case, there exist {Vi } such that
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Λ(X ) =
∑

i

V †
i X Vi . (18)

Equation (18) is called a Kraus representation of Λ.
Suppose first that Λ is CP. Applying id⊗Λ to

∑
i j

ei j ⊗ ei j =
∣∣∣
∑

i

ei ⊗ ei

〉 〈∑
j

e j ⊗ e j

∣∣∣ ≥ 0

we obtain

C(Λ) =
∑

i j

ei j ⊗Λ(ei j ) ≥ 0 .

Suppose conversely that C(Λ) ≥ 0, then write its eigenvalue decomposition

C(Λ) =
∑
α

λα | fα〉〈 fα| =
∑
α

|ϕα〉〈ϕα| ,

where ϕα := √λα fα which is possible because λα ≥ 0. Consider now a single term
|ϕ〉〈ϕ|, ϕ ∈ Cd ⊗ Cd , and find out of which super-operator it is the encoding

ϕ =
∑

i

ei ⊗ ϕi , ϕi ∈ Cd ,

|ϕ〉〈ϕ| =
∑

i j

ei j ⊗ |ϕi 〉〈ϕ j | .

But this is the encoding of

Φ : ei j → |ϕi 〉〈ϕ j | = V † ei j V

with V † ei := ϕi . Hence, by Example 4, Λ is a sum of CP maps and is therefore CP.

Example 19 (Rescaling spin 1
2 ). We begin with the Pauli matrices

σ x =
[

0 1
1 0

]
, σ y =

[
0 −i
i 0

]
, σ z =

[
1 0
0 −1

]
,

σ xσ y = i σ z,
(
σ x
)† = σ x ,

(
σ x
)2 = 1,

and consider a rescaling map

Λ(1) = 1 and Λ(σ ) = λ σ, λ ∈ R .

Λ is positive iff −1 ≤ λ ≤ 1. Putting λ = −1 is a quite bad quantum operation as
it destroys the commutation relations. When is Λ CP? To answer that question we
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must compute C(Λ) using

Λ(e11) = Λ
(

1
2 1+ 1

2 σ z
)
= 1

2 1+ λ
2 σ z,

Λ(e12) = Λ
(

1
2 σ x + i

2 σ y
)
= λ

2
σ x + iλ

2
σ y = λ e12 .

We now have

C(Λ) =

⎡
⎢⎢⎣

1+λ
2 0 0 λ

0 1−λ
2 0 0

0 0 1−λ
2 0

λ 0 0 1+λ
2

⎤
⎥⎥⎦ ∼=

[ 1−λ
2 0
0 1−λ

2

]
⊕
[ 1+λ

2 λ

λ 1+λ
2

]
.

It follows that C(Λ) ≥ 0 iff − 1
3 ≤ λ ≤ 1, so we can flip all components of σ

but have to rescale them at least with a factor three in order to guarantee complete
positivity.

We end this section with some general properties of CP maps.

1. The notion of complete positivity can easily be extended to maps between dif-
ferent algebras.

2. If Λ : A → B is P and A is B are Abelian, then Λ is CP. This means that
complete positivity, just as entanglement, is a purely quantum mechanical notion
with no classical counterpart.

3. If Λ is P, then

Λ(X∗) = Λ(X )∗ and ‖Λ(X )‖ ≤ ‖X‖ ‖Λ(1)‖ .

4. If Λ is PUP, then

Λ(X∗)Λ(X ) ≤ Λ(X∗X ) for normal X : X X∗ = X∗X .

This is sometimes called the Schwarz inequality for positive maps.
5. If Λ is CPUP, then

Λ(X∗)Λ(X ) ≤ Λ(X∗X ) for all X .

This very useful inequality is called the two-positivity inequality. In fact it holds
already if the extension of Λ over the two-dimensional matrices is positive,
which is a strictly weaker condition than complete positivity.

Semi-groups of UPCP maps on Md

The last topic of these introductory lectures will be the structure of semi-groups of
completely positive unity preserving maps on Md . As mentioned before, such maps
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give the simplest description of a dissipative evolution. The weak coupling theory
shows that this sort of approximation arises when one has a weak interaction of the
system with the environment and when there is a clear separation between the fast
time scale on which the environment relaxes and the natural time scale of the small
system. We do not enter into the details of the derivation but rather start with the
outcome: a semi-group of UPCP maps.

We deal more precisely with the following structure:

Γt : Md →Md is UPCP for every t ≥ 0,

Γt ◦ Γs = Γt+s, s, t ≥ 0,

Γ0 = id and t → Γt is continuous.

Writing the semi-group in terms of a generator

Γt = exp(tL) with L(X ) = lim
t↓0

Γt (X )− X

t
,

we ask about the general form of L. The result is given by Lindblad’s theorem: there
are H = H † ∈Md and Vi ∈Md such that

L(X ) = i[H, X ]+
∑

i

(
V †

i X Vi − 1
2 V †

i Vi X − 1
2 X V †

i Vi

)
.

The idea of the proof is to expand the maps in Jamiołkowski–Choi encoding
around t = 0 and to express that for t slightly positive the Choi matrices of the
corresponding maps have to be positive:

C
(
exp(tL)

) = C(id)+ tC(L)+ o(t).

We computed C(id) in Example 18; it is d times the projector on a maximally entan-
gled vector. Write now Cd ⊗ Cd = C⊕ Cd2−1 where the first dimension is spanned
by the maximally entangled vector. Then

C(L) =
[

a αT

α A

]
, (19)

with a ∈ R, α ∈ Cd2−1 and A ∈ Md2−1. Requiring complete positivity amounts
to requiring that C(id) + tC(L) + o(t) be positive for t ≥ 0 and small. We
can use the following result from linear algebra: on Cm ⊕ Cn consider the block
matrix

A =
[

A11 A12

A21 A22

]
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with, e.g., A12 : Cn → Cm , then A ≥ 0 is equivalent with

A21 =
(

A12
)†
,

A22 ≥ 0,

A12 Ker(A22) = 0,

A11 ≥ A12
(

A22
)−1

A21 .

In this way we obtain for the generator (19) the conditions

A ≥ 0 and α ∈ Ran(A) .

To finish the proof, we write the eigenvalue decomposition of A and repeat the
computation we made for the Jamiołkowski–Choi–Kraus theorem.
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Covariant Mappings for the Description
of Measurement, Dissipation and Decoherence
in Quantum Mechanics

Bassano Vacchini

The general formalism of quantum mechanics for the description of statistical
experiments is briefly reviewed, introducing in particular position and momentum
observables as POVM characterized by their covariance properties with respect to
the isochronous Galilei group. Mappings describing state transformations both as
a consequence of measurement and of dynamical evolution for a closed or open
system are considered with respect to the general constraints they have to obey and
their covariance properties with respect to symmetry groups. In particular different
master equations are analyzed in view of the related symmetry group, recalling the
general structure of mappings covariant under the same group. This is done for the
damped harmonic oscillator, the two-level system, and quantum Brownian motion.
Special attention is devoted to the general structure of translation-covariant master
equations. Within this framework a recently obtained quantum counterpart of the
classical linear Boltzmann equation is considered, as well as a general theoretical
framework for the description of different decoherence experiments, pointing to a
connection between different possible behaviors in the description of decoherence
and the characteristic functions of classical Lévy processes.

1 Introduction

Since its very beginning quantum mechanics has urged physicists and other scien-
tists, getting interested in or involved with it, to radically change their classical pic-
ture of reality, as well as their way to describe and understand experiments. Despite
the elapsed time, the matured knowledge about quantum mechanics and the growing
number of applications, the process of deeper understanding of quantum mechanics
and of its truly basic features is still on its way. In these notes we will stress the
standpoint that quantum mechanics actually is a probability theory, enlarging and
modifying the horizons of the classical one and allowing to describe quantitatively
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experiments at the microscopic level. The probabilistic standpoint aiming at an
understanding of the statistical structure of quantum theory has in fact turned out
to be of great significance in recent achievements in the description of quantum
mechanical systems, leading to the introduction of new relevant concepts and tools
often in analogy with classical probability theory. In particular we will build on
the growing impact that the modern formulation of quantum mechanics in terms of
statistical operators, POVM and instruments is having in recent experiments and
theoretical studies, as well as the relevance of the characterization of mappings
giving the dynamical evolution of both closed and open systems. This applies as
well to one-step transformations describing the overall effect of a measurement, as
to measurements resolved in their time duration, or more generally irreversible evo-
lutions taking place as a consequence of the interaction of the system of interest with
some external system, typically even though not necessarily having many degrees of
freedom. The presentation will pay particular attention to the structural features of
such mappings and especially to their covariance with respect to the representation
of a symmetry group, whenever this applies.

This contribution grew out of the lectures given at the Summer School in Theo-
retical Physics in Durban and is organized as follows. Section 2 supports the point
of view according to which quantum mechanics actually is a probability theory and
its general formulation is presented in this spirit, starting from the description of
statistical experiments. States are introduced as preparation procedures mathemat-
ically represented by statistical operators, observables as registration procedures
are described in terms of POVM, and the statistics of experimental outcomes is
given in terms of the trace formula. Finally, general state transformations as a
consequence of measurement are associated with instruments, which provide the
transformed state as well as the statistics of the measurement. Examples are pro-
vided focussing on position observables, as well as joint position and momentum
observables, understood as specified according to their covariance properties with
respect to the isochronous Galilei group. Section 3 explores the relevance of the
concept of mapping acting on a space of operators in a given Hilbert space for situ-
ations ranging from free evolutions to open system dynamics. Dynamical mappings
are characterized in view of possible constraints depending on the physical situa-
tion of interest and leading to important informations on their possible structure.
In particular we consider the notion of covariance with respect to the represen-
tation of a symmetry group, complete positivity and semigroup composition law,
corresponding to a Markov approximation. This leads to the Lindblad character-
ization of generators of quantum-dynamical semigroups, possibly also including
covariance requirements. Particular examples of master equation are given stressing
their covariance properties with respect to the proper symmetry, also providing the
general characterization of master equations covariant under the same group. This
is done for the damped harmonic oscillator and shift-covariance, a two-level sys-
tem and rotation-covariance, quantum Brownian motion and translation-covariance.
Finally it is shown how the general expression of a translation-covariant genera-
tor, building on a quantum non-commutative version of the Lévy-Khintchine for-
mula, actually encompasses a quantum version of the classical linear Boltzmann
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equation for the description of the motion of a quantum test particle in a gas, as
well as a unified theoretical framework for the explanation of different decoherence
experiments.

2 Quantum Mechanics as Quantum Probability

In the present section we will briefly introduce the basic tools necessary in order
to describe in the most general way a quantum mechanical system and the possible
measurements that can be performed on it. The basic idea that we would like to
convey or at least draw to the reader’s attention is that quantum mechanics is indeed
naturally to be seen as a probability theory, significantly different from the classical
one, rather than an extension of classical mechanics. Experiments at the microscopic
level are of statistical nature in an essential way and their quantitative description
asks for a probabilistic model which is the quantum one, emerged in the twenties
and first thoroughly analyzed by von Neumann [1], actually before the foundations
of classical probability theory were laid down by Kolmogorov in the thirties [2].
The fact that quantum mechanics is a probability theory different from the clas-
sical one, containing the latter as a special case, brings with itself that quantum
experiments and their statistical description exhibit new features, which sometimes
appear unnatural or paradoxical when somehow forced to fit in a classical proba-
bilistic picture of reality, which is closer to our intuition. Our presentation is more
akin to the introduction to quantum mechanics one finds in textbooks on quantum
information and communication theory rather than standard quantum mechanics
textbooks, even though at variance with the former we will mainly draw examples
from systems described in an infinite-dimensional Hilbert space. The standpoint
according to which quantum mechanics actually is a probability theory is by now
well understood, and even though it is still not in the spirit of typical textbook pre-
sentations, it has been developed and thoroughly investigated in various books and
monographes (see, e.g., [3–10]), to which we refer the reader for more rigorous and
detailed presentations. A more concise account of similar ideas has also been given
in [11].

2.1 Classical Statistical Description

The basic setting of classical probability theory as clarified by Kolmogorov is
described within the mathematical framework of measure theory. A classical prob-
ability model is fixed by specifying a measure space, which is the space of ele-
mentary events, a σ -algebra on this measure space characterizing the meaningful
events to which we want to ascribe probabilities, and a probability measure on it.
The observable quantities are then given by real measurable functions on this space,
i.e., random variables. Take for example the case of the classical description of the
dynamics of a point particle in three-dimensional space. Then the measure space is
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given by the usual phase-space R3 × R3 endowed with the Borel σ -algebra, where
the points of phase-space can be identified with position and momentum of the par-
ticle. The probability measure can be expressed by means of a probability density
f (x,p), i.e., a positive and normalized element of L1(R3 × R3) and observables are
described as random variables given by real functions X (x,p) in L∞(R3 × R3), so
that exploiting the canonical duality relation between L1 and L∞ mean values are
given by

〈X〉 f =
∫

R3×R3
d3xd3p X (x,p) f (x,p).

The very same probability density f (x,p) allows to calculate the expectation value
of any random variable, i.e., of any observable. In particular any observable taking
values in R defines a probability measure on this space according to the formula.

μX (M) =
∫

X−1(M)
d3xd3p f (x,p),

where M is a Borel set in the outcome space R of the observable and again the same
probability density f (x,p) appears.

As a special case for the position observable X (x,p) = x the measure μx can be
expressed by means of the probability density f x(x) obtained by taking the marginal
of f (x,p) with respect to momentum and similarly for the momentum observable
X (x,p) = p. In particular one can notice that all observables commute, the points of
phase-space can be taken as meaningful elementary events and any probability mea-
sure can be uniquely decomposed as a convex mixture of the extreme points of the
convex set of probability measures, given by the measures with support concentrated
at these elementary events given by single points in phase-space. This probabilistic
description is however not mandatory in the classical case, where a deterministic
description applies, and it only becomes a very convenient or the only feasible tool
for systems with a very high number of degrees of freedom. The situation is quite
different in the quantum case.

2.2 Statistics of an Experiment

In the quantum case experiments are by necessity of statistical nature. The most
simple setup can typically be described as a suitably devised macroscopic apparatus,
possibly made up of lots of smaller components, preparing the microscopical system
we would like to study, which in turn triggers another macroscopic device designed
to measure the value of a definite quantity. The reproducible quantity to be com-
pared with the theory is the relative frequency according to which the preparation
apparatus triggers the registration apparatus in a high enough number of repetitions
of the experiment under identical circumstances. A most simple sketch of such a
setup can be given by the so-called Ludwig’s Kisten [3, 12]
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preparation
apparatus

directed
interaction

−→
registration
apparatus .

More complicated setups can be traced back to this one by suitably putting together
different apparatuses in order to build a new preparation apparatus, and similarly for
the registration part. In order to describe such experiments one has to introduce a
suitable probability theory, which can actually account for the various experimental
evidences to be gained at microscopic level. This is accomplished by introducing
mathematical objects describing the preparation and the registration, as well as a
statistical formula to extract from these two objects the probability densities to be
compared with the experimental outcomes.

States as preparation procedures

In the quantum case a preparation procedure is generally described by a statistical
operator. Given the Hilbert space H in which the system one considers has to be
described, e.g., L2(R3), for the center of mass degrees of freedom of a particle in
three-dimensional space, statistical operators are positive trace class operators on H
with trace equal to one:

ρ ∈ K(H) = {ρ ∈ T (H)| ρ = ρ†, ρ ≥ 0,Tr ρ = 1}.

The set K(H) of statistical operators is a convex subset of the space T (H) of trace
class operators on the Hilbert space H, so that any convex mixture of statistical
operators is again a statistical operator:

ρ1, ρ2 ∈ K(H)⇒ w = μρ1 + (1− μ)ρ2 ∈ K(H) for 0 ≤ μ ≤ 1.

In particular the extreme points of such a set are given by one-dimensional projec-
tions, that is to say pure states, which cannot be expressed as a proper mixture. We
stress the fact that statistical operators are actually to be associated to the considered
statistical preparation procedure, rather than to the system itself. More precisely they
describe a whole equivalence class of preparation procedures which all prepare the
system in the same state, even though by means of quite different macroscopic appa-
ratuses. This correspondence between statistical operators and equivalence classes
of preparation procedures is reflected in the fact that a statistical operator gener-
ally admits infinitely many different decompositions, as mixtures of pure states or
other statistical operators. Relying on the spectral theorem a statistical operator can
always be written in the form:

ρ =
∑

j

λ j |ψ j 〉〈ψ j |, λ j ≥ 0,
∑

j

λ j = 1,
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with {|ψ j 〉} as an orthonormal set. However infinite many others not necessarily
orthogonal demixtures generally exist. Think for example of the most simple case of
a statistical operator describing the spin state of a fully unpolarized beam of spin 1/2
particles: ρ = 1

21. Then any orthogonal basis in C2 (e.g., the eigenvectors of the spin
operator along a given arbitrary direction) provides an orthogonal decomposition
of the considered statistical operator. Such decompositions correspond to different
possible macroscopic procedures leading to such a preparation. In the N runs of
the statistical experiment the beam is prepared N

2 times with spin +�

2 along a fixed
direction, and N

2 times with spin −�

2 . All such preparations, differing in the choice
of direction, lead to the same state, but they cannot be performed together since no
apparatus can measure the spin along two different directions: they are therefore
incompatible. The prepared state is however the same and the actual preparation
cannot be distinguished on the basis of any other subsequent statistical experiment
whatsoever performed on the obtained state. At variance with the classical case,
therefore, states are given by operators which generally admit infinitely many con-
vex decompositions and represent equivalence class of preparation procedures.

Observables as registration procedures

On the same footing one has to associate a mathematical object to a macroscopic
apparatus assembled in order to measure the value of a certain quantity. Once again
utterly different and generally incompatible macroscopic procedures and appara-
tuses can possibly be used to assign a value to the same physical quantity. The
operator describing an observable is therefore to be understood as the mathemat-
ical representative of a whole equivalence class of registration procedures. In full
generality an observable in the sense clarified above is given by a positive operator-
valued measure (POVM), the measure theoretic aspect appearing since one is in fact
interested in the probability that the quantity of interest lies within a certain interval.

A POVM is a mapping defined on a suitable measure space and taking values in
the set of positive operators within B(H), that is to say the Banach space of bounded
operators on H. Taking for the sake of concreteness an observable assuming values
in R3, such as the position of a particle in three-dimensional space, a POVM is given
by a mapping F defined on the Borel σ -algebra B(R3):

F : B(R3)→ B(H),

M → F(M)

associating to each interval M ∈ B(R3) a positive bounded operator in such a way
that

0 ≤ F(M) ≤ 1,

F(∅) = 0, F(R3) = 1,

F(∪i Mi ) =
∑

i

F(Mi ) i f Mi ∩ M j = ∅when i �= j,
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where the first condition will turn out to be necessary for the statistical interpre-
tation, the second one expresses normalization, always associating the null opera-
tor to the empty set and the identity to the whole space, while the last condition
amounts to σ -additivity. For a fixed set M ∈ B(R3) the operator F(M), positive
and between zero and one, is called effect. Note that observables are given here by
generally noncommuting operators. Moreover we have not requested F(M) to be a
projection operator, that is to say a self-adjoint and idempotent operator such that
F2(M) = F(M). If this further condition holds for all M ∈ B(R3) one has a very
special case of POVM, also called projection-valued measure (PVM), since it is a
measure taking values in the space of projections on the Hilbert space H. For such
measures we shall use the symbol E(M). In the case of PVM there is a one-to-one
correspondence between the PVM and a uniquely defined self-adjoint operator, thus
explaining the standard definition of observable as self-adjoint operator.

The operator associated to the PVM turns out to be a very convenient tool for the
calculation of mean values and higher order moments, such as variances. Let us call
EA the PVM for the description of measurements on the quantity A taking values
in Rk . The first moment of the measure

A =
∫

σ (A)
xd EA(x)

actually identifies k commuting self-adjoint operators, the integral being calculated
over the support of the measure or equivalently the spectrum of A, and higher
moments of the measure can be identified with powers of these operators, according
to the functional calculus:

An =
∫

σ (A)
xnd EA(x).

In particular a whole collection of commuting self-adjoint operators can be obtained
considering the integrals of a measurable function g from Rk to R:

g(A) =
∫

σ (A)
g(x)d EA(x),

corresponding to measurements of functions of the quantity A. These facts are no
longer true for a generic POVM.

Statistics of outcomes

Having introduced statistical operators as general mathematical representatives of
a state, in the sense of characterization of preparation apparatuses, and POVM as
mathematical representatives of observables, associated to registration apparatuses,
we now have to combine states and observables in order to express the probabilities
to be compared with the outcomes of an experiment. This is done by considering
the duality relation between the spaces of states and observables. As in the classical
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description the space of observables L∞ is the dual of the space L1 of states; here
the Banach space of bounded operators is the dual of the space T (H) of trace class
operators to which statistical operators do belong. The duality relation is given by
the trace evaluation:

Tr : B(H)× T (H)→ C,

(X, w)→ Tr X †w,

where taking any basis in H, e.g., {un}, the trace can be evaluated as

Tr X †w =
∑

n

〈un|X †w|un〉,

the series being convergent for any bounded operator X and trace class operator
w and the result independent of the choice of orthonormal basis. Given a system
prepared in the state ρ, the probability that a quantity described by the POVM F
takes value in the set M and is given by the statistical formula:

Tr ρF(M). (1)

The property of ρ and F ensure that Tr ρF(M) is indeed a positive number between
zero and one, and in particular for every pair ρ and F the mapping

Tr ρF(·) : B(R3)→ [0, 1],

M → Tr ρF(M)

is a classical probability measure assigning to each set M the probability Tr ρF(M)
that the outcome of the experiment lies in that set. For a given state to each observ-
able one can therefore associate a classical probability measure; however only com-
muting observables are described by the same probability measure, to different
observables one generally has to associate distinct probability measures. The for-
mula (1) when considered for the particular case of a pure state |ψ〉 and a PVM E
leads to the usual expression

‖E(M)ψ‖2

for the evaluation of the statistics of an experiment measuring E once the system has
been prepared in the state |ψ〉. Considering within this framework the usual notion
of position and momentum observables one immediately realizes that the related
measures can be expressed by means of the two well-distinct probability densities
|ψ(x)|2 and |ψ̃(p)|2, respectively (ψ̃ denoting as usual the Fourier transform). At
variance with the classical case there is in general no common probability density
allowing to express the probability measure of all observables. There is in fact no
sample space of elementary events. Note that for fixed F the mapping ρ → Tr ρF(·)
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is an affine mapping from the convex set K(H) of statistical operators into the con-
vex set of classical probability measures on B(R3). For a fixed observable this is all
we need in order to compare with the experimental outcomes. Since any such affine
mapping can be written in this form for a uniquely defined POVM one can come
to the conclusion that POVM indeed provide the most general description of the
statistics of experimental outcomes compatible with the probabilistic interpretation
of quantum mechanics. The statistical formula (1) is the key point where the theory
can be compared with experiment and allows us to better understand the meaning
of the equivalence classes. Two preparation apparatuses are in the same equivalence
class if they produce the very same statistics of outcomes for any observable, and
similarly two registration apparatuses are in the same equivalence class if they lead
to the same statistics of outcomes for any state.

2.3 Example of POVM for Position and Momentum

Now we want to consider a few examples of POVM and PVM concentrating on
position and momentum, showing in particular how symmetry properties can be a
very important guiding principle in the determination of meaningful observables,
once we leave the correspondence principle focussed on quantum mechanics as a
new mechanics with respect to the classical one. As we shall see while for the case
of either position or momentum alone POVM are essentially given by a suitable
coarse-graining with respect to the usual PVM; if one wants to give statistical pre-
dictions for the measurement of both position and momentum together the corre-
sponding observable is given by necessity in terms of a POVM. For a more detailed
and mathematically accurate exposition we refer the reader to [7, 13, 14].

Covariant mapping

Let us first start by introducing the notion of a mapping covariant under a given sym-
metry group G. As we will show this notion is of great interest in many situations,
both for the construction of POVM and general dynamical mappings. Consider a
measure space X with the σ -algebra of Borel sets B(X ). Such a space is called a
G-space if there exist an action of G on X defined as a mapping that sends group
elements g ∈ G to transformation mappings μg on X in such a way as to preserve
group composition and identity

μgμh = μgh, ∀g, h ∈ G, μe = 1X ,

where 1X denotes the identity function on X . If furthermore G acts transitively on
X , in the sense that any two point of X can be mapped one into the other with μg′

for a suitable g′ ∈ G, then X is called a transitive G-space. Consider for example
X = R3; then X is a transitive G-space with respect to the group of translations.
The elements of the group are three-dimensional vectors acting in the obvious way
on the Borel sets of R3, i.e., μa = M + a for all a ∈ R3 and for all M ∈ B(R3).
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Consider as well a unitary representation U (g) of the same group G on a Hilbert
space H:

|ψg〉 = U (g)|ψ〉 forψ ∈ H and g ∈ G,

in terms of which one also has a representation of G on a space A(H) of operators
acting on H:

Ag = U †(g)AU (g) for A ∈ A(H).

A mapping M defined on B(X ) and taking values in A(H) is said to be covariant
with respect to the symmetry group G provided it commutes with the action of the
group in the sense that

U †(g)M(X )U (g) =M(μg−1 (X )) ∀X ∈ B(X ) ∀g ∈ G. (2)

A symmetry transformation on the domain of the mapping is mapped into the sym-
metry transformation corresponding to the same group element on the range of the
mapping.

Position observable

As an example of an observable in the sense outlined above we now want to intro-
duce the position observable. Rather than relying on the usual correspondence prin-
ciple with respect to classical mechanics, we want to give an operational definition
of the position observable, fixing its behavior with respect to the action of the rele-
vant symmetry group, which in this case is the isochronous Galilei group, containing
translations, rotations and boosts, that is to say velocity transformations. The group
acts in the natural way on the Borel sets of R3, and the covariance equations that we
require for an observable to be interpreted as position observable are the following:

U †(a)Fx(M)U (a) = Fx(M − a) ∀ a ∈ R3,

U †(R)Fx(M)U (R) = Fx(R−1 M) ∀R ∈ SO(3), (3)

U †(q)Fx(M)U (q) = Fx(M) ∀q ∈ R3.

The mapping Fx to be interpreted as a position observable has to transform covari-
antly with respect to translations and rotations as in (2), and to be invariant under a
velocity transformation. These equations can also be seen as a requirement on the
possible macroscopic apparata possibly performing such a measurement. The appa-
ratus used to test whether the considered system is localized in the translated region
M − a should be in the equivalence class to which the translated apparatus used to
test localization in the region M belongs, and similarly for rotations. Localization
measurements should instead be unaffected by boost transformations. A solution
of these covariance equations, that is to say a POVM complying with (3), is now
a position observable. If one looks for such a solution asking moreover that the
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POVM be in particular a PVM, the solution is uniquely given by the usual spectral
decomposition of the position operator:

Ex(M) = χM (x̂) =
∫

M
d3x|x〉〈x|, (4)

where χM denotes the characteristic function of the set M . The first moment of the
spectral measure gives the usual triple of commuting position operators:

x̂ =
∫

R3
d3x x|x〉〈x|,

whose powers coincide with the higher moments of Ex:

x̂n =
∫

R3
d3x xn|x〉〈x|.

In particular for a given state ρ mean values and variances of the classical proba-
bility distribution giving the position distribution can be expressed by means of the
operator x̂:

Mean(Ex) = Tr ρx̂ = 〈x̂〉ρ,
Var(Ex) = Tr ρx̂2 − (Tr ρx̂)2 = 〈x̂2〉ρ − 〈x̂〉2ρ.

The pair (U, Ex), where U is the unitary representation of the symmetry group,
here the isochronous Galilei group, and Ex a PVM covariant under the action of
U is called a system of imprimitivity. More generally a solution of (3) as a POVM
is obtained as follows. Let us introduce a rotationally invariant probability density
h(x):

h(x) ≥ 0,
∫

d3x h(x) = 1, h(Rx) = h(x),

with variance given by

Var(h) =
∫

d3x x2h(x).

One can then indeed check that the expression

Fx(M) = (χM ∗ h)(x̂) =
∫

M
d3y

∫

R3
d3x h(x− y)|x〉〈x|, (5)

where ∗ denotes convolution, actually is a POVM complying with (3), and in fact
provides the general solution of (3). The POVM (5) actually is a smeared version
of the usual sharp position observable, the probability density h(x) which fixes the
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POVM being understood as the actual, finite resolution of the registration apparatus.
For any state ρ the first moment of the associated probability density can still be
expressed as the mean value of the usual position operator, since Mean(h) = 0:

Mean(Fx) =
∫

R3
d3y

∫

R3
d3x yh(x− y) Tr ρ|x〉〈x|

= 〈x̂〉ρ.

The second moment however differs:

Var(Fx) =
∫

R3
d3y

∫

R3
d3x y2h(x− y) Tr ρ|x〉〈x|

−
(∫

R3
d3y

∫

R3
d3x yh(x− y) Tr ρ|x〉〈x|

)2

= 〈x̂2〉ρ − 〈x̂〉2ρ + Var(h) .

It is not anymore expressed only by the mean value of the operator which can be
used to evaluate the first moment and by its square. A further contribution Var(h)
appears, which is state independent, and reflects the finite resolution of the equiva-
lence class of apparatuses used for the localization measurement. Note that the usual
result is recovered in the limit of a sharply peaked probability density h(x)→ δ3(x).
Taking, e.g., a distribution of the form

hσ (x) =
(

1

2πσ 2

) 3
2

e−
1

2σ2 x2 σ→0−−→ δ3(x),

one has that in the limit of an infinite accuracy in the localization measurement of
the apparatus exploited the POVM reduces to the standard PVM:

Fx(M) =
∫

M
d3y

∫

R3
d3x

(
1

2πσ 2

) 3
2

e−
1

2σ2 (x−y)2 |x〉〈x|
σ→0−−→

∫

M
d3y

∫

R3
d3x δ3(x− y)|x〉〈x|

=
∫

M
d3x |x〉〈x|.

Analogous results can obviously be obtained for a momentum observable, asking
for the corresponding covariance properties.

Position and momentum observable

A more interesting situation appears when considering apparatuses performing both
a measurement of the spatial location of a particle as well as of its momentum.
As it is well known no observable can be associated to such a measurement in the
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framework of standard textbook quantum mechanics. Let us consider the covari-
ance equations of such an observable in the more general framework of POVM.
A position and momentum observable should be given by a POVM Fx,p defined
on B(R3 × R3) satisfying the following covariance equations under the action of
translations, rotations and boosts, respectively:

U †(a)Fx,p(M × N )U (a) = Fx,p((M − a)× N ) ∀ a ∈ R3,

U †(R)Fx,p(M × N )U (R) = Fx,p(R−1 M × R−1 N ) ∀R ∈ SO(3), (6)

U †(q)Fx,p(M × N )U (q) = Fx,p(M × (N − q)) ∀q ∈ R3.

Such covariance equations, defining a position and momentum observable by means
of its operational meaning, do not admit any solution within the set of PVM, while
the general solution within the set of POVM is given by

Fx,p(M × N ) = 1

(2π�)3

∫

M
d3x

∫

N
d3p W (x,p)SW †(x,p), (7)

where S is a trace class operator, positive, with trace equal to one and invariant under
rotations

S ∈ T (H), S ≥ 0, Tr S = 1, U †(R)SU (R) = S,

so that it is in fact a statistical operator, even though it does not have the meaning of
a state, while the unitaries

W (x,p) = e−
i
�

(x·p̂−x̂·p)

are the Weyl operators built in terms of the canonical position and momentum oper-
ators. The covariance of (7) under (6) can be directly checked, together with its
normalization, working with the matrix elements of the operator expression. The
couple (U, Fx,p), where U is the unitary representation of the symmetry group and
Fx,p a POVM covariant under its action, is now called system of covariance. The
connection with position and momentum observables as well as the reason why
such a joint observable can be expressed only in the formalism of POVM, where
position observables alone are generally given by smeared versions of the usual
position observable, and similarly for momentum, can be understood looking at
the marginal observables. Starting from (7) one can in fact consider a measure of
position irrespective of the momentum of the particle, thus coming to the marginal
position observable:
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Fx(M) = Fx,p(M × R3)

=
∫

M
d3y

∫

R3
d3x |x〉〈x− y|S|x− y〉〈x|

=
∫

M
d3y

∫

R3
d3x hSx (x− y)|x〉〈x|,

where the function

hSx (x) = 〈x|S|x〉 (8)

is a well-defined probability density due to the fact that the operator S has all the
properties of a statistical operator, so that 〈x|S|x〉 would be the position probabil-
ity density of a system described by the state S. On similar grounds the marginal
momentum observable is given by

Fp(N ) = Fx,p(R3 × N )

=
∫

N
d3q

∫

R3
d3p |p〉〈p− q|S|p− q〉〈p|

=
∫

N
d3q

∫

R3
d3p hSp (p− q)|p〉〈p|,

where again the function

hSp (p) = 〈p|S|p〉 (9)

is a well-defined probability density, which corresponds to the momentum proba-
bility density of a system described by the statistical operator S. As it appears the
marginal observables are given by two POVM characterized by a smearing of the
standard position and momentum observables by means of the probability densities
hSx (x) and hSp (p), respectively. It is exactly this finite resolution in the measurement
of both position and momentum, with two probability densities satisfying

Vari (hSx )Vari (hSp ) ≥ �
2

4
for i = x, y, z

as follows from (8) and (9), that allows for a joint measurement for position and
momentum in quantum mechanics, without violating Heisenberg’s uncertainty rela-
tions. In order to consider a definite example we take S to be a pure state corre-
sponding to a Gaussian of width σ :

〈x|ψ〉 =
(

1

2πσ 2

) 3
4

e−
1

4σ2 x2

,
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on which the Weyl operators act as a translation in both position and momentum,
leading to

〈x|W (x0,p0)|ψ〉 =
(

1

2πσ 2

) 3
4

e−
1

4σ2 (x−x0)2+ i
�

p0·(x−x0) = 〈x|ψx0,p0〉.

In particular one has

hψx (x) =
(

1

2πσ 2

) 3
2

e−
1

2σ2 x2

, Vari (hψx ) = σ 2 for i = x, y, z

and

hψp (p) =
(

2σ 2

π�2

) 3
2

e−
2σ2

�2 p2

, Vari (hψp ) = �
2

4σ 2
for i = x, y, z

so that

Vari (hψx )Vari (hψp ) = �
2

4
i = x, y, z.

The POVM now reads

Fx,p(M × N ) = 1

(2π�)3

∫

M
d3x0

∫

N
d3p0 |ψx0p0〉〈ψx0p0 | (10)

with marginals

Fx(M) =
∫

M
d3x0

∫

R3
d3x

(
1

2πσ 2

) 3
2

e−
1

2σ2 (x−x0)2 |x〉〈x|

and

Fp(N ) =
∫

N
d3p0

∫

R3
d3p

(
2σ 2

π�2

) 3
2

e−
2σ2

�2 (p−p0)2 |p〉〈p|

for position and momentum, respectively. It is now clear that depending on the value
of σ one can have more or less coarse-grained position and momentum observables.
No limit on σ can however be taken in order to have a sharp observable for both
position and momentum. In the limit σ → 0 one has as before Fx → Ex, but
the marginal for momentum would identically vanish, intuitively corresponding to
a complete lack of information on momentum, and vice versa.

As a last remark we would like to stress that despite the fact that PVM are only
a very particular case of POVM, corresponding to most accurate measurements,
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self-adjoint operators, which are in one-to-one correspondence to PVM, do play a
distinguished and very important role in quantum mechanics as generators of sym-
metry transformations, according to Stone’s theorem.

2.4 Measurements and State Transformations

The formalism presented up to now allows to describe in the most general way
the state corresponding to a given preparation procedure and the statistics of the
experimental outcomes obtained by feeding a certain registration procedure by such
a state. It is however also of interest to have information not only on the statistics
of the outcomes, which amounts to provide a classical probability density, but also
to specify the state obtained as a consequence of such a measurement, provided
the system does not simply get absorbed. This makes it possible to deal, e.g., with
repeated consecutive measurements, allowing for a description of continual mea-
surement in quantum mechanics [15], as well as to use the combination of initial
preparation and registration apparata altogether as a new preparation apparatus,
preparing states according to the value of a certain observable.

State transformations with a measuring character as instruments

The mathematical object characterizing a state transformation as a consequence of a
given measurement is called instrument and is generally given by a mapping defined
on the outcome space of the measurement, e.g., B(R3) in the examples we have
considered, and taking values in the space of bounded mappings acting on the space
of trace class operators, obeying the following requirements:

F(·) : B(R3)→ B(T (H)),

M → F(M),

TrF(R3)[ρ] = Tr ρ,

F(∪i Mi ) =
∑

i

F(Mi ) if Mi ∩ M j = ∅ for i �= j ,

where for each M ∈ B(R3) the mapping F(M) is completely positive and generally
trace decreasing, transforming trace class operators into trace class operators. F(M)
is often called operation, and the mapping F is normalized in the sense that F(R3)
is trace preserving. As for any completely positive mapping for fixed M one has for
F(M) a Kraus representation:

F(M)[ρ] =
∑

i

ViρV †
i .

The trace class operator
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F(M)[ρin]

whose trace is generally less than one, describes the subcollection of systems
obtained by asking the outcome of the measurement to be in M ∈ B(R3). After
the measurement in fact the transformed system can be sorted according to the out-
come of the measurement itself. The transformed state according to a measurement
without readout, i.e., without making any selection with respect to the result of the
measurement (the so-called a priori state) is given by

ρout = F(R3)[ρin],

the mapping F(R3) now only describing the modification on the incoming state ρin

as a consequence of its interaction with the registration apparatus. The transformed
state conditioned on the result of the measurement, i.e., the new state obtained by
sorting out only the systems for which the outcome of the measurement was in
M ∈ B(R3) (the so-called a posteriori state) is given by

ρout(M) = F(M)[ρin]

TrF(M)[ρin]
.

Of course an instrument does not only provide the transformed trace class operator
describing the system after its interaction with the registration apparatus performing
the measurement, but also the statistics of the outcomes. The probability of an out-
come M ∈ B(R3) for a measurement described by the instrument F on an incoming
state ρ is given by the formula:

TrF(M)[ρ],

which can also be expressed by means of a POVM F uniquely determined by the
instrument F as follows:

F(M) = F ′(M)[1],

where F ′ denotes the adjoint mapping with respect to the trace evaluation

TrF(M)[ρ] = Tr 1(F(M)[ρ]) = Tr(F ′(M)[1])ρ = Tr F(M)[ρ].

Note that the correspondence between instruments and POVM is not one-to-one. In
fact there are different registration apparatuses, possibly leading to quite different
transformations on the incoming state, which however all provide a measurement
of the same observable. As a consequence while an instrument uniquely defines the
associated POVM as outlined above, generally infinitely many different instruments
are compatible with a given POVM, corresponding to different macroscopic imple-
mentation of measurements of the same observable. Note further that if the mapping
F is reversible it is necessarily given by a unitary transformation and therefore does
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not have any measuring character, the system transforms in a reversible way because
of its free evolution described by a self-adjoint operator. A very special case of
instrument can be obtained starting from the knowledge of an observable given as
self-adjoint operator, A = ∑i ai Ei , where {Ei } is a collection of mutually orthog-
onal projection operators, summing up to the identity, Ei = E2

i and
∑

i Ei = 1.
Then the mapping

F(M)[ρ] =
∑
{i |ai∈M}

EiρEi

actually is an instrument describing the state transformation of an incoming state
ρ as a consequence of the measurement of the observable A as predicted by von
Neumann’s projection postulate. If the experimenter detects the value ai for A the
transformed state is given by

F({ai })[ρ] = EiρEi .

This instrument has the peculiar property of being repeatable, in the sense that from

F(M)[F(N )[ρ]] =
∑

{i |ai∈M∩N }
EiρEi ,

it follows

F({ai })[F({ai })[ρ]] = F({ai })[ρ] = EiρEi ,

that is to say subsequent measurements of the same observable do always lead to
the same result, which implicitly means an absolute precision in the measurement
of the observable. As it appears this is a very particular situation, which can only
be realized for a measurement in the sense of PVM of an observable with discrete
spectrum.

Example of instrument for position and momentum

We now provide an example of an instrument corresponding to the description of a
state transformation taking place by jointly measuring position and momentum of a
particle in L2(R3), whose uniquely associated POVM is just the one given in (10).
Consider in fact the mapping

Fx,p(M × N )[ρ] = 1

(2π�)3

∫

M
d3x0

∫

N
d3p0 |ψx0p0〉〈ψx0p0 |ρ|ψx0p0〉〈ψx0p0 | ,

built in terms of the normalized Gaussian wave packets |ψx0p0〉 centered in (x0,p0).
This mapping depends on the interval M× N as a σ -additive measure, thanks to the
fact that it is expressed by means of an operator density with respect to the Lebesgue
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measure. Normalization is ensured by the completeness relation for Gaussian wave
packets

1

(2π�)3

∫

R3
d3x0

∫

R3
d3p0 |ψx0p0〉〈ψx0p0 | = 1,

leading to

TrFx,p(R3 × R3)[ρ] = 1

(2π�)3

∫

R3
d3x0

∫

R3
d3p0 〈ψx0p0 |ρ|ψx0p0〉,

= Tr ρ,

while the adjoint mapping acting on the identity operator

Fx,p′(M × N )[1] = 1

(2π�)3

∫

M
d3x0

∫

N
d3p0 |ψx0p0〉〈ψx0p0 |1|ψx0p0〉〈ψx0p0 |

= 1

(2π�)3

∫

M
d3x0

∫

N
d3p0 |ψx0p0〉〈ψx0p0 |

= Fx,p(M × N )

immediately gives the joint position and momentum POVM considered in (10).
More generally, one can consider an instrument of the form:

Fx,p(M × N ) = 1

(2π�)3

∫

M
d3x0

∫

N
d3p0

×W (x0,p0)
√

SW †(x0,p0)ρW (x0,p0)
√

SW †(x0,p0),

which is again well defined due to the relation

1

(2π�)3

∫

R3
d3x0

∫

R3
d3p0 W (x0,p0)SW †(x0,p0) = 1,

where S is a positive operator given by a statistical operator invariant under rota-
tions, and whose adjoint mapping applied to the identity

Fx,p′(M × N )[1] = 1

(2π�)3

∫

M
d3x0

∫

N
d3p0 W (x0,p0)SW †(x0,p0)

= Fx,p(M × N )

coincides with the general expression for a covariant position and momentum
POVM observable given in (7).
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3 Open Systems and Covariance

In the previous section we have outlined the modern formulation of quantum
mechanics, understood as a probability theory necessary for the description of the
outcomes of statistical experiments involving microscopic systems. In this frame-
work pure states are generally replaced by statistical operators, observables in the
sense of self-adjoint operators are substituted by mappings taking values in an oper-
ator space, von Neumann’s projection postulate is a very special case of mappings
with a measuring character describing state transformations as a consequence of
measurement. As it appears the notion of mapping taking values in an operator
space becomes very natural and of great relevance. The knowledge of an instrument
for example allows not only to predict the statistics of the outcomes of a certain
measurement, but also the transformation of the state due to the interaction with the
measuring apparatus. On the contrary the spontaneous transformation of the state
of a closed system due to passing time is described by a very special kind of map-
pings, unitary time evolutions uniquely determined by fixing a self-adjoint operator.
Considering more generally an open system, that is to say a system interacting with
some other external system, its irreversible evolution in time as a consequence of
this interaction is determined by a suitable mapping, whose characterization is a
very intricate and interesting subject, together with the possibility of understanding
and describing such an evolution as a measurement effected on the system. While it
is relatively easy to state the general properties that should be obeyed by such map-
pings in order to provide a well-defined time evolution, the characterization of the
structure of such mappings in its full generality is an overwhelmingly complicated
problem. Important and quite general results can however be obtained considering
constraints coming from physical or mathematical considerations. Also in this sec-
tion we will aim at a brief introduction of key concepts, skipping all mathematical
details, referring the reader to [16, 8, 7, 9, 17] for a more exhaustive presentation.

3.1 Constraints on Dynamical Mappings

In Sect. 2 we have already mentioned two important constraints applying to map-
pings describing how a state transforms in time, both as a consequence of a mea-
surement or of its dynamical evolution. Actually the two situations are not of a
completely different nature, even though in the first case the time extension of the
interaction between system and measuring apparatus is typically though not neces-
sarily assumed to be very short and neglected, so that the whole transformation is
considered as a one-step process. In the case of the evolution of a closed or open
system on the contrary the explicit time dependence of the mapping is essential,
while a decomposition of the mapping according to the measurement outcome for a
certain observable is generally not available.

Complete positivity

The first constraint was the by now well-known requirement of complete positiv-
ity of the mapping. It is a mathematical condition, which at the beginning was
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somewhat mistrusted by physicists, naturally coming in the foreground in quantum
mechanics because of the tensor product structure of the space in which to describe
composite systems, thus playing an important role in the theory of entanglement. A
completely positive mapping is a mapping which remains positive when extended
in a trivial way, i.e., by taking the tensor product with the identity mapping, on
a composite Hilbert space. Considering a positive mapping M in the Schrödinger
picture, acting on the space of states T (H):

M : T (H)→ T (H)

ρ →M[ρ],

complete positivity amounts to the requirement that the mapping

Mn : T (H⊗ Cn)→ T (H⊗ Cn)

ρ ⊗ σn →M[ρ]⊗ σn

is positive for any n ∈ N, with σn a statistical operator in Cn . An equivalent require-
ment can be formulated on the adjoint mapping M′ in Heisenberg picture acting on
the space of observables B(H)

M′ : B(H)→ B(H),

B →M′[B].

M′ is completely positive provided

n∑
i, j=1

〈ψi |M′(B†
i B j )ψ j 〉 ≥ 0 for {ψi } ⊂ H and {Bi } ⊂ B(H)

for any n ∈ N. As it was shown by Kraus, any completely positive mapping can be
expressed as follows:

M[ρ] =
∑

i

ViρV †
i

with a suitable collection {Vi } of operators also called Kraus operators, as already
mentioned in Sect. 2.4. As it appears from this fundamental result, of great signif-
icance in applications, the condition of complete positivity is quite restrictive, thus
allowing for important characterizations.

Covariance

Another important constraint, this time however only arising in the presence of
symmetries, is given by the requirement of covariance, already considered in Sec.
2.3. For the case of a mapping defined in an operator space, e.g., in the Schrödinger
picture sending statistical operators to statistical operators, given a unitary represen-
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tation U (g) of the group G on H, the requirement of covariance can be expressed
as follows:

M[U (g)ρU †(g)] = U (g)M[ρ]U †(g) ∀g ∈ G. (11)

This condition expresses the fact that the action of the mapping and of the repre-
sentation of G on T (H) commute, and automatically implies the same property for
the adjoint mapping M′ acting on the space of observables B(H). Such a condition
typically applies when a symmetry, available in the system one is studying, is not
spoiled by the transformations brought about on the system by letting it interact with
another system, be it a reservoir or a measuring apparatus. The possibility of giving
a general solution of the covariance equation (11) obviously depends on the unitary
representation of the group and on the class of mappings considered, possibly giving
very detailed information on the general structure of such mappings.

Semigroup evolution

For the case of a closed system we know that the mapping giving the reversible
time evolution is a one-parameter group of unitary transformations, fixed by a self-
adjoint Hamiltonian according to Stone’s theorem. A broader class of time evolu-
tions allowing for an irreversible dynamics can be obtained by relaxing the group
property to a semigroup composition law, corresponding to the existence of a pre-
ferred time direction. In particular one can introduce a so-called quantum-dynamical
semigroup, which is a collection of one-parameter mappings {Ut }t∈R+ such that

Ut : T (H)→ T (H),

ρ → Ut [ρ],

is completely positive and trace preserving for any t ≥ 0, for t = 0 one has the
identity mapping, and the following semigroup composition law applies:

Ut = Ut−sUs ∀t ≥ s ≥ 0. (12)

The semigroup condition (12) is sometimes called Markov condition, because it
expresses the fact that the time evolution of the system does not exhibit memory
effects, in analogy to the notion of Markov semigroup in classical probability theory.
It tells us that the evolution up to time t can be obtained by arbitrarily composing the
evolution mapping up to an intermediate time s with an evolution mapping depend-
ing only on the residual time t − s acting on the state ρs = Us[ρ0], not referring to
the knowledge of the state at previous times {ρt ′ }0≤t ′≤s . The requirement of complete
positivity for this family of mappings allows for a most important characterization
of the so-called generator L of the quantum-dynamical semigroup, which is the
mapping giving the infinitesimal time evolution, defined through the relation:

Ut = etL.
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According to a celebrated result of Gorini, Kossakowski, Sudarshan and Lindblad
[18, 19] of enormous relevance in the applications, the general structure of the gen-
erator of a quantum-dynamical semigroup is given in the Schrödinger picture by

L[ρ] = − i

�
[H, ρ]+

∑
j

[L jρL†
j −

1

2
{L†

j L j , ρ}], (13)

where H is a self-adjoint operator, and the operators L j are often called Lindblad
operators. The expression (13) is also called a master equation, since it provides
the infinitesimal time evolution of the statistical operator, according to dρ/dt =
L[ρ]. The key point is now obviously to determine the explicit expression of H and
L j relevant for the reduced dynamics of the physical system of interest, typically
depending on the external reservoir and the details of the interaction mechanism.
As we shall see further restrictions on L can arise as a consequence of an available
symmetry not destroyed by the interaction. Note that introducing the operator

K = i

�
H + 1

2

∑
j

L†
j L j ,

where the effective Hamiltonian H appears together with an operator �

2

∑
j L†

j L j

which can be formally seen as an imaginary, optical effective potential, the Lindblad
structure (13) can also be written as

L[ρ] = −Kρ − ρK † +
∑

j

L jρL†
j ,

leading to a Dyson expansion of the semigroup evolution

Ut [ρ] = etL[ρ] = Kt [ρ]

+
∞∑

n=1

∫
. . .

∫

0≤t1≤...≤tn≤t
dt1 . . . dtn Kt1 [J [Kt2−t1 . . .J [Kt−tn [ρ]] . . .]], (14)

where the superoperators

J [ρ] =
∑

j

L jρL†
j Kt [ρ] = e−K tρe−K †t

appear. The formal solution of the time evolution (14) has a quite intuitive physical
meaning; in fact it can be seen as a sequence of relaxing evolutions over a time inter-
val t given by the contraction semigroup Kt interrupted by jumps described by the
completely positive mapping J . The sum of over all possible such evolutions gives
the final state. Most recently a general characterization has been obtained also for a
class of non-Markovian time evolutions which provides a kind of generalization of
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the Lindblad result (13), in the sense that the state evolved up to a given time can
be expressed as a mixture of subcollections (that is positive trace class operators
with trace less than one) each obeying a Lindblad type of master equation, however,
with different Lindblad operators [20–24], so that the overall time evolution does no
more obey a semigroup composition law as in (12).

3.2 Shift-Covariance and Damped Harmonic Oscillator

As a first example of a master equation corresponding to a completely positive
quantum-dynamical semigroup let us consider the well-known master equation for
a damped harmonic oscillator [25], describing, e.g., the damping of an electro-
magnetic field mode in a cavity. The Hilbert space of the single mode is given by
H = l2(C), the square summable sequences over the complex field, with basis {|n〉},
the ket |n〉 denoting as usual the eigenvector with eigenvalue n ∈ N of the number
operator N = a†a, a† and a being respectively creation and annihilation operators
of a photon in the given mode of frequency ω. The master equation then reads

LDHO[ρ] = − i

�
[H0(N ), ρ]+ η(Nβ(ω)+ 1)[aρa† − 1

2
{a†a, ρ}]

+ηNβ(ω)[a†ρa − 1

2
{aa†, ρ}], (15)

where Nβ(ω) denotes the average of the photon number operator over a thermal
distribution

Nβ(ω) = 1

eβ�ω − 1
= 1

2
[coth(β�ω/2)− 1],

H0(N ) = �ωN is the free Hamiltonian and η the relaxation rate.

Dissipation and decoherence for the damped harmonic oscillator

As it is well known such a master equation describes both classical dissipative
effects as well as quantum decoherence effects. To see this let us first focus on
dissipative effects, considering the time evolution of the mean amplitude and mean
number of quanta in the mode. Considering the adjoint mapping of (15), giving the
time evolution in Heisenberg picture

L′DHO[X ] = + i

�
[H0(N ), ρ]+ η(Nβ(ω)+ 1)[a†ρa − 1

2
{a†a, ρ}]

+ηNβ (ω)[aρa† − 1

2
{aa†, ρ}],

one can solve the Heisenberg equations of motion for X → a and X → N = a†a,
finally obtaining
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〈a(t)〉 = Tr(a(t)ρ) = 〈a〉e−iωt− η

2 t ,

〈N (t)〉 = Tr(N (t)ρ) = 〈N 〉e−ηt + Nβ(ω)(1− e−ηt ),

where a(t), N (t) denote Heisenberg operators at time t , with a = a(0), N = N (0)
the corresponding Schrödinger operators. The mean amplitude of the mode thus
rotates in the complex plane, vanishing for long enough times, with a decay rate
given by (η/2)−1; the population of the mode goes from the initial value to a final
thermal distribution with a decay rate given by η−1. For the study of decoherence we
shall consider the time evolution of an initial state given by a coherent superposition
of two coherent states characterized by two amplitudes α and β [9]. Setting

ρ0 = 1

N0
[|α〉〈α| + |β〉〈β| + |α〉〈β| + h.c.],

one can look for the time evolved state, exploiting the fact that coherent states
remain coherent states under time evolution. Working for simplicity at zero tem-
perature, so that Nβ(ω) = 0 one has

ρt = 1

Nt
[|α(t)〉〈α(t)| + |β(t)〉〈β(t)| + e−

1
2 |α−β|2(1−e−ηt )|α(t)〉〈β(t)| + h.c.],

where α(t) = αe−iωt− η

2 t and similarly for β(t). As it immediately appears, the
so-called coherences, that is to say the off-diagonal matrix elements of the statis-
tical operator, are suppressed with respect to diagonal ones by a factor that for long
enough times is given by

e−
1
2 |α−β|2 = |〈α|β〉|,

that is to say the modulus of the overlap of the two coherent states, a tiny quantity
for two macroscopically distinguishable states of the electromagnetic field.

Structure of the mapping and covariance

It is immediately apparent that the master equation (15) is an example of a realiza-
tion of the Lindblad structure (13) with just two Lindblad operators given by

L1 =
√
η(Nβ(ω)+ 1)a, L2 =

√
ηNβ(ω)a†,

with Hamiltonian

H0(N ) = �ωN

and stationary solution

w ∝ e−βH0(N ). (16)



64 B. Vacchini

More than this it is also covariant under the action of the group U (1). Consider in
fact the unitary representation of U (1) on H = l2(C) given by

U (θ ) = eiθN with θ ∈ [0, 2π ],

where N is the usual number operator. The master equation (15) is covariant under
this unitary representation of the group U (1) according to

LDHO[U (θ )ρU †(θ )] = U (θ )LDHO[ρ]U †(θ ) (17)

as can be checked immediately. One can also show that this is the unique struc-
ture of master equation bilinear in a and a† complying with the Lindblad structure,
covariant under U (1) and admitting (16) as a stationary state [26].

It is also possible to give a complete characterization of the structure of the
generator of a quantum-dynamical semigroup covariant with respect to U (1) as
in (17). The general result has been obtained by Holevo [27, 28] and is given by
the following expression:

L[ρ] = − i

�
[H (N ), ρ]+

∑
j

[
A0 j (N )ρA†

0 j (N )− 1

2

{
A†

0 j (N )A0 j (N ), ρ
}]

+
∞∑

m=1

∑
j

[
W m Amj (N )ρA†

mj (N )W †m − 1

2

{
A†

mj (N )Amj (N ), ρ
}]

+
∞∑

m=1

∑
j

[
W †m A−mj (N )ρA†

−mj (N )W m − 1

2

{
A†
−mj (N )Pm A−mj (N ), ρ

}]
,

where Amj (N ) are functions of the number operator N , the generator of the symme-
try; the operator W is given by

W =
∞∑

n=0

|n + 1〉〈n|

acting as a shift |n〉 → |n+1〉 on the basis of eigenvectors of the number operator, so
that this kind of symmetry is also called shift-covariance, while Pm is the projection
on the subspace spanned by {|n〉}n=m,...,+∞ given by

Pm ≡
∞∑

n=m

|n〉〈n| = W m W †m

and one further has

U (θ )W m = eiθm W mU (θ ), (18)
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which compared to (28) can be seen as a generalized Weyl relation, expressed by
means of the isometric but not unitary operators W m [29]. Examples of realizations
of this general shift-covariant expression are given by the master equation for the
damped harmonic oscillator as indicated above, corresponding to the choice

A1(N ) = √ηNβ(ω)
√

N + 1, A−1(N ) = e
1
2 β�ω

√
ηNβ(ω)

√
N ,

Am(n) = 0 m = 0, |m| > 1, H (N ) = �ωN ,

as can be checked immediately exploiting the polar representation for the creation
and annihilation operators:

a = W †√N , a† = W
√

N + 1.

A more general structure still preserving the stationary solution (16) is given by the
choice

A0(n) = η0, Am(N ) = √ηm N
m
2
β (ω)

√
(N + m)!

N !
,

A−m(N ) = e
m
2 β�ω√ηm N

m
2
β (ω)

√
N !

(N − m)!
, H (N ) = �ωN ,

corresponding to

L[ρ] = − i

�
[H0(N ), ρ]− η0[N , [N , ρ]]

+
+∞∑
m=1

ηm(Nβ(ω)+ 1)m[amρa†m − 1

2
{a†mam, ρ}]

+
+∞∑
m=1

ηm N m
β (ω)[a†mρam − 1

2
{ama†m, ρ}],

where a phase damping term is given by a double commutator with the number
operator, as well as many photon processes with different decay rates appear.

3.3 Rotation-Covariance and Two-Level System

Another example of a well-known master equation which can be characterized in
terms of covariance properties comes from the description of a two-level system
interacting with a thermal reservoir, e.g., a two-level atom in the presence of the
radiation field or a spin in a magnetic field, so that the Hilbert space is now simply
C2. It corresponds to the so-called Bloch equation and is typically used in quantum
optics and magnetic resonance theory. Focussing on a two-level atom with transi-
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tion frequency ω and spontaneous emission rate η interacting with the quantized
electromagnetic field one has

L2LS[ρ] = − i

�
[H0(σz), ρ]+ η(Nβ(ω)+ 1)[σ−ρσ+ − 1

2
{σ+σ−, ρ}]

+ηNβ(ω)[σ+ρσ− − 1

2
{σ−σ+, ρ}], (19)

where Nβ(ω) is the thermal photon number at the transition frequency and as usual
σ± = 1

2 (σx ± iσy) with {σi }i=x,y,z , the Pauli matrices.

Dissipation and decoherence for the two-level system

As it is well known this master equation predicts relaxation to a stationary state
which is diagonal in the basis of eigenvectors of the free Hamiltonian, with a relative
population between ground and excited state determined by the temperature of the
bath. This can be immediately seen considering as usual the adjoint mapping of (19):

L′2LS[X ] = + i

�
[H0(σz), X ]+ η(Nβ(ω)+ 1)[σ+Xσ− − 1

2
{σ+σ−, X}]

+ηNβ(ω)[σ−Xσ+ − 1

2
{σ−σ+, X}]

and solve the Heisenberg equations of motion for the operator X → Pe = |1〉〈1|
representing the population in the excited state

〈Pe(t)〉 = Tr(Pe(t)ρ) = 〈Pe〉e−η̄t + Nβ(ω)

2Nβ(ω)+ 1
(1− e−η̄t ),

which also fixes 〈Pg(t)〉 = 1−〈Pe(t)〉 due to the normalization condition, where we
have denoted as η̄ = η(2Nβ(ω)+ 1) the total transition rate and Pe = Pe(0). Due to
the simplicity of the equation also the evolution in time of the coherences is easily
determined, now considering the evolution in the Heisenberg picture of the operator
X → C = |0〉〈1|, which is given by

〈C(t)〉 = Tr(C(t)ρ) = 〈C〉e−iωt− η̄

2 t ,

where again C = C(0). With elapsing time the populations reach a stationary value,
while coherences get suppressed.

pStructure of the mapping and covariance

In strict analogy to the results presented in Sect. 3.2 also the master equation (19)
can be immediately recast in Lindblad form (13) with two Lindblad operators given
by
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L1 =
√
η(Nβ(ω)+ 1)σ−, L2 =

√
ηNβ(ω)σ+

and Hamiltonian

H0(σz) = �ω

2
σz ,

admitting the stationary solution

w ∝ e−βH0(σz ). (20)

The master equation is also covariant under the group SO(2), describing rotations
along a given axis and being isomorphic to U (1), which accounts for the similar-
ity between the two equations, even though important differences appear due to
the different Hilbert spaces in which the two systems are described and the group
represented. Consider in fact the representation of SO(2) in C2:

U (φ) = e
i
�
φSz φ ∈ [0, 2π ]

with Sz = �

2 σz : one immediately checks that (19) is covariant in the sense that

L2LS[U (φ)ρU †(φ)] = U (φ)L2LS[ρ]U †(φ). (21)

Also in this case it is possible to provide the explicit expression of the generator of
a rotation-covariant quantum-dynamical semigroup in the sense of (21). It takes the
simple form [30]:

L[ρ] = − i

�
[H (σz), ρ]+

∑
m=0,±1

cm[T1mρT †
1m −

1

2
{T †

1m T1m, ρ}],

where the cm are positive constants and T1m are irreducible tensor operators given
by

T11 = − 1√
2

(σx + iσy), T10 = σz, T1−1 = 1√
2

(σx − iσy)

or equivalently in terms of σz , σ+ and σ−, in order to allow for a direct comparison
with (19):

L[ρ] = − i

�
[H (σz), ρ]− c0

2
[σz, [σz, ρ]]

+2c−1[σ−ρσ+ − 1

2
{σ+σ−, ρ}]+ 2c1[σ+ρσ− − 1

2
{σ−σ+, ρ}].

The use of the word rotation-covariance hints at the fact that such a master equa-
tion applies, e.g., to a spin 1/2 in an environment with axial symmetry, so that one
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has invariance under rotations along a given axis. More generally the full rotation
group SO(3) can be considered, and a general characterization also exists for the
structure of generators of semigroups acting on Cn and invariant under SO(3) [31],
relevant for the description of relaxation of a spin j under the influence of isotropic
surroundings.

3.4 Translation-Covariance and Quantum Brownian Motion

As a further example of the concepts introduced above we will consider the master
equation for the description of quantum Brownian motion, which applies to the
motion of a massive test particle in a gas of lighter particles. The Hilbert space of
relevance is given here by L2(R3), and denoting the usual position and momentum
operators as x̂ and p̂ the general structure of the master equation reads

LQBM[ρ] = − i

�
[H0(p̂), ρ]− i

�

η

2

∑
i

[x̂i , { p̂i , ρ}]

−Dpp

�2

∑
i

[x̂i , [x̂i , ρ]]− Dxx

�2

∑
i

[ p̂i , [ p̂i , ρ]], (22)

where we have assumed isotropy for simplicity, the index i = x, y, z denoting the
different Cartesian coordinates and H0(p̂) = p̂2/2M is the free Hamiltonian. This
and similar types of master equation, bilinear in the position and momentum oper-
ators, do appear in different contexts, leading to different microscopic expressions
for the coefficients, as well as to the appearance of other terms such as a double
commutator [x̂i , [ p̂i , ρ]] with position and momentum operators [9, 32]. We will
here have in mind the dynamics of a test particle interacting through collisions with
a homogeneous gas [33–35], so that the coefficients read

Dpp = η
M

β
, Dxx = η

β�
2

16M
,

with M the mass of the test particle.

Dissipation and decoherence for quantum Brownian motion

As in the previous case we want to point briefly out how such a master equation
describes both dissipative and decoherence effects. Regarding dissipation one has
similarly to the classical case that the mean value of momentum is driven to zero,
while the average of the squared momentum goes to the equipartition value fixed
by the gas temperature. The effect of decoherence typically manifests itself in the
fact that superpositions of spatially macroscopically distinguished states are quickly
suppressed. Let us first focus on dissipation, considering the adjoint mapping of (22)
in Heisenberg picture:
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L′QBM[X ] = + i

�
[H0(p̂), X ]+ i

�

η

2

∑
i

{ p̂i , [x̂i , X ]}

−Dpp

�2

∑
i

[x̂i , [x̂i , X ]]− Dxx

�2

∑
i

[ p̂i , [ p̂i , X ]].

As already mentioned the observables of interest are given by the momentum oper-
ators X → p̂ and the kinetic energy X → E = p̂2/2M , whose mean values evolve
according to

〈p̂(t)〉 = Tr(p̂(t)ρ) = 〈p̂〉e−ηt ,

〈E(t)〉 = Tr(E(t)ρ) = 〈E〉e−2ηt + 3

2β
(1− e−2ηt ),

where again p̂(t) and E(t) denote Heisenberg operators at time t . The average
momentum thus relaxes to zero with a decay rate η−1, while the mean kinetic energy
reaches the equipartition value with a rate (2η)−1. We now concentrate on the study
of decoherence, both for position and momentum. This can be done considering
the off-diagonal matrix elements in both position and momentum of a statistical
operator evolved in time according to (22). To do this we exploit the knowledge of
the exact solution [36], neglecting however the contribution − i

�

η

2

∑
i [x̂i , { p̂i , ρ}]

responsible for dissipative effects, that would lead to too a cumbersome expression.
Considering an initial state ρ0 the state up to time t reads in the momentum repre-
sentation:

〈p|ρt |q〉 = e−
Dxx
�2 (p−q)2t e

− 1
12

Dpp
�2

(
(p−q)

M t
)2

t

×
(

�
2

4π Dppt

)3/2 ∫
d3k e−

�
2k2

4Dpp t 〈p− k|ρ0|q− k〉.

It appears immediately that off-diagonal matrix elements are quickly suppressed
with elapsing time, depending on their separation (p − q)2. The factor depending
on the coefficient Dxx is due to the momentum localization term

∑
i [ p̂i , [ p̂i , ρ]],

while the factor where the coefficient Dpp appears is due to the position localiza-
tion term

∑
i [x̂i , [x̂i , ρ]]; this also suppresses coherences in momentum because

different momentum states quick-ly lead to spatial separation, so that the position
localization mechanism is again of relevance. As far as coherences in position are
concerned one has to consider the matrix elements of ρt in the position representa-
tion. Here it is convenient to express the exact solution ρt in terms of the solution
ρS

t of the free Schrödinger equation. One has the quite cumbersome expression:
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〈x|ρt |y〉 = e
− Dpp

�2 (x−y)2t

⎡
⎣1− Dpp

4M2 t2 1[
Dxx+ Dpp

3M2 t2
]

⎤
⎦
⎛
⎝ �

2

4π
[

Dxx + Dpp

3M2 t2
]

t

⎞
⎠

3/2

×
∫

d3z e
− �

2z2

4

[
Dxx+ Dpp

3M2 t2
]

t
e

i
�

Dpp
2M

z·(x−y)t[
Dxx+ Dpp

3M2 t2
]

〈x− z|ρS
t |y− z〉,

which is essentially given by a convolution of the free solution with a Gaussian
kernel, multiplied by an exponential factor suppressing off-diagonal matrix elements
according to their distance (x−y)2 in space. Spatially macroscopically distant states
are again very quickly suppressed.

Structure of the mapping and covariance

The master equation (22) can also be written manifestly in Lindblad form, as it can
be seen introducing a single Lindblad operator for each Cartesian direction

Li = √ηai ,

with

ai = 1√
2λth

(
x̂i + i

�
λ2

th p̂i

)
, λth =

√
β�2

4M
, [ai , a†

j ] = δi j ,

and the effective Hamiltonian

H = H0(p̂)+ η

2

∑
i

{x̂i , p̂i },

leading to

LQBM[ρ] = − i

�

[
H0(p̂)+ η

2

∑
i

{x̂i , p̂i }, ρ
]
+ η

∑
i

[aiρa†
i −

1

2
{a†

i ai , ρ}]

with a stationary solution

w ∝ e−βH0(p). (23)

Also the quantum Brownian motion master equation is characterized by covariance
under the action of a symmetry group which in this case is the group R3 of transla-
tions. Given the unitary representation

U (a) = e
i
�

a·p̂ for a ∈ R3 (24)
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of the group of translations on L2(R3) where the operators p̂ act as generator of
the symmetry, one can indeed check immediately that (22) is covariant under this
representation in the sense that

LQBM[U (a)ρU †(a)] = U (a)LQBM[ρ]U †(a). (25)

In this case however, at odds with the case of the master equation for the damping
harmonic oscillator, the three requirements of Lindblad structure, covariance under
R3 and a stationary state given by (23) do not uniquely fix the form of a master
equation at most bilinear in the operators x̂ and p̂ [26].

A most important general characterization of structures of generators of quantum-
dynamical semigroups covariant under translations has been obtained by Holevo,
relying on a non-commutative quantum generalization [29, 37, 38] of the classical
Lévy-Khintchine formula (see e.g. [9, 39]). In this case the generator can be written
as follows:

L[ρ] = − i

�
[H (p̂), ρ]+ LG[ρ]+ LP [ρ],

where H (p̂) is a self-adjoint operator only depending on the momentum operators,
while LG and LP correspond to a Gaussian and a Poisson component, as in the
Lévy–Khintchine formula, and are given by

LG[ρ] = − i

�

[
ŷ0 + 1

2i

r∑
k=1

(ŷk Lk(p̂)− L†
k(p̂)ŷk), ρ

]

+
r∑

k=1

[
(ŷk + Lk(p̂))ρ(ŷk + Lk(p̂))† − 1

2

{
(ŷk + Lk(p̂))†(ŷk + Lk(p̂)), ρ

}]

(26)

and

LP [ρ] =
∫

R3

∞∑
j=1

[
U (q)L j (q, p̂)ρL†

j (q, p̂)U †(q)− 1

2

{
L†

j (q, p̂)L j (q, p̂), ρ
}]

dμ(q)

+
∫

R3

∞∑
j=1

[
ω j (q)(U (q)ρL†

j (q, p̂)U †(q)− ρL†
j (q, p̂))

+ (U (q)L j (q, p̂)ρU †(q)− L j (q, p̂)ρ)ω∗j (q)
]

dμ(q)

+
∫

R3

∞∑
j=1

[
U (q)ρU †(q)− ρ − i

�

[q · x̂, ρ]

1+ |q|2
]
|ω j (q)|2dμ(q) (27)

respectively, where



72 B. Vacchini

ŷk =
3∑

i=1

aki x̂i , k = 0, . . . , r≤ 3, aki ∈ R

are linear combinations of the three position operators x̂i , Lk(p̂) and L j (q, p̂) and
are generally complex functions of the momentum operators,

U (q) = eiq·x̂

are unitary operators corresponding to a translation in momentum or boost, satisfy-
ing together with (24) the Weyl form of the canonical commutation rules

U (a)U (q) = eiq·aU (q)U (a), (28)

ω j (q) complex functions and μ(q) a positive measure on R3 satisfying the Lévy
condition

∫

R3

|q|2
1+ |q|2

∞∑
j=1

|ω j (q)|2dμ(q) < +∞.

As it appears that this is quite a rich structure, allowing for the description of a very
broad class of physical phenomena, only having in common invariance under trans-
lations. A first application has already been mentioned above when considering the
master equation for quantum Brownian motion, describing the motion of a quantum
test particle in a gas, close to thermal equilibrium, which corresponds to a particular
realization of the Gaussian component (26). Further examples related to more recent
research work will be considered in the next section.

3.5 Translation-Covariant Mappings for the Description
of Dissipation and Decoherence

In the previous section we have given the general expression of a translation-
covariant generator of a quantum-dynamical semigroup according to Holevo’s
results. This operator expression can be actually distinguished in to two parts, as
also happens in the classical Lévy-Khintchine formula, providing the general char-
acterization of the exponent of the characteristic function of a classical Lévy process
(see e.g., [9] for a concise presentation from a physicist’s standpoint or [39] for
a more thorough probabilistic treatment). Very roughly speaking in the presence
of translation-covariance the dynamics can be described essentially in terms of
momentum exchanges between test particle and reservoir. The Gaussian part cor-
responds to a situation in which the dynamics is determined by a very large number
of very small momentum transfers, which in the case of finite variance leads to a
Gaussian process. For example, in the case of quantum Brownian motion the test
particle is close to thermal equilibrium, so that typical values of its momentum are
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much bigger than that of the gas particles due to its bigger mass, and the momentum
changes imparted in single collisions are therefore relatively small. In contrast, the
Poisson part can account for a situation in which few interaction events correspond-
ing to significant momentum transfers drive the dynamics, as happens for example
in experiments on collisional decoherence, where very few kicks already lead to
a significant loss of coherence. In addition to this the general expression can also
account for peculiar situations, typical of Lévy processes, where the variance or
the mean of the momentum transfers do diverge, so that rare but extremely strong
events can give the predominant contributions to the dynamics. We will now try
to exemplify such situations referring to recent research work, thus showing how
paying attention to covariance properties of dynamical mappings does not only lead
to a better and deeper understanding of known results as for the case of damped
harmonic oscillator, two-level system and quantum Brownian motion briefly con-
sidered in Sects. 3.2, 3.3 and 3.4 respectively, but also provides important insights
into the treatment of more complicated problems, allowing for a unified description
of apparently quite different situations.

Dissipation and quantum linear Boltzmann equation

The well-known quantum Brownian motion master equation (22) provides, as we
have seen, an example of a realization of the Gaussian component (26) of the gen-
eral structure of generators of translation-covariant quantum-dynamical semigroups
specified above. A further example involving the Poisson component (27) can be
given, still considering the reduced dynamics of the center of mass of a test particle
interacting through collisions with a gas, however, not focussing on the case of a
very massive particle close to thermal equilibrium, so that momentum transfers and
therefore energy transfers due to collision events between test particle and gas are
not necessarily small anymore. This kinetic stage of dynamical description asks for
a quantum version of the classical linear Boltzmann equation, the equation being
linear in the sense that the gas is supposed to be and remain in equilibrium, so
that only the state of the test particle evolves in time. Such a master equation has
been obtained recently and its expression in the case in which the scattering cross-
section describing the collisions between test particle and gas only depends on the
transferred momentum q, which is always true in Born approximation, is given by
[33, 40–42]

dρ

dt
=− i

�
[H0, ρ]+ 2π

�
(2π�)3n

∫
d3q |t̃(q)|2 ×

[
e

i
�

q·x̂

√
S(q, E(q, p̂))ρ

√
S(q, E(q, p̂))e−

i
�

q·x̂ − 1

2
{S(q, E(q, p̂)), ρ}

]
,

(29)

where n is the gas density, t̃(q) is the Fourier transform of the interaction potential,
S a two-point correlation function known as dynamic structure factor, depending on
momentum transfer q and energy transfer E(q,p):
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E(q,p) = (p+ q)2

2M
− p2

2M
.

The dynamic structure factor for a free gas of particles obeying Maxwell–Boltzmann
statistics has the explicit expression:

SMB(q, E) =
√

βm

2π

1

q
e
− β

8m
(2m E+q2)2

q2 ,

while the general definition of dynamic structure factor reads

S(q, E) = 1

2π�

∫
dt
∫

d3x e
i
�

(Et−q·x) 1

N

∫
d3y 〈N (y)N (x+ y, t)〉 ,

that is to say it is the Fourier transform with respect to momentum and energy trans-
fer of the two-point density–density correlation function of the medium, N (y) being
the number density operator of the gas. This indirectly tells us that the dynamics
of the test particle is indeed driven by the density fluctuations in the fluid, due to
its discrete microscopic nature [43]. In the structure of the master equation the uni-
tary operators e

i
�

q·x̂ and e−
i
�

q·x̂ appearing to the left and the right of the statistical
operator do account for the momentum transfer imparted to the test particle as a
consequence of a certain collision; the rate with which collisions characterized by a
certain momentum transfer happen however, do depend on the actual momentum of
the test particle described by the operator p̂ through the dependence of the dynamic
structure factor S on p. This mechanism accounts for the approach to equilibrium,
favoring collisions driving the kinetic energy of the test particle towards the equipar-
tition value. The result can also be generalized to an arbitrary scattering cross sec-
tion, not necessarily only depending on momentum transfer, by introducing in the
master equation instead of the scattering cross section an operator-valued scattering
amplitude, averaged over the gas particles momenta [44]. One can indeed check
that the quantum linear Boltzmann equation (29) and its generalizations, apart from
being in Lindblad form and manifestly covariant, do admit the correct stationary
state (23) and drive the kinetic energy to its equipartition value.

Decoherence and Lévy processes

In the present section we will show how translation-covariant quantum-dynamical
semigroups can provide a unified theoretical description of quite different deco-
herence experiments. At odds with the previous section we are not interested in
the dynamics of the momentum observable, decoherence due to spatial localization
usually takes place on a much shorter timescale than relaxation phenomena. We
therefore neglect in the general expressions (26) and (27) of a translation-covariant
generator the dependence on the momentum operator, which we take as a classical
label, characterized, e.g., by the mean momentum of the incoming test particle. The
formulas (26) and (27) drastically simplify to
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LG[ρ] = −i
3∑

i=1

bi [x̂i , ρ]− 1

2

3∑
i, j=1

Di j
[
x̂i ,
[
x̂ j , ρ

]]
, (30)

LP [ρ] =
∫

dμ(q)|λ(q)|2
[

e
i
�

q·x̂ρe−
i
�

q·x̂ − ρ − i

�

[q · x̂, ρ]

1+ |q|2
]
, (31)

with

bi ∈ R, Di j ≥ 0, |λ(q)|2 =
∞∑
j=1

|L†
j (q)+ ω j (q)|2 ,

whose matrix elements in the position representation simply read

〈x|LG[ρ]+ LP [ρ]|y〉 = −Ψ (x− y)〈x|ρ|y〉

with

Ψ (x) = i
3∑

i=1

bi xi + 1

2

3∑
i=1

Di j xi x j

−
∫

dμ(q)|λ(q)|2
[

e
i
�

q·x − 1− i

�

q · x
1+ |q|2

]
, (32)

which is exactly the general expression of the characteristic exponent of a classical
Lévy process [9, 39]. Neglecting the free contribution the equation for the time evo-
lution of the statistical operator in the position representation, which now becomes

d

dt
〈x|ρ|y〉 = −Ψ (x− y)〈x|ρ|y〉,

has solution

〈x|ρt |y〉 = e−tΨ (x−y)〈x|ρ0|y〉 ≡ Φ(t, x− y)〈x|ρ0|y〉 , (33)

given by multiplying the matrix elements of the initial statistical operator by the
characteristic function

Φ(t, x) = e−tΨ (x)

of a classical Lévy process evaluated at a point (x − y) given by the difference
between the two spatial locations characterizing bra and ket with which the matrix
elements of ρt are taken. In view of the general properties of the characteristic func-
tion Φ, which is the Fourier transform of a probability density, that is to say
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Φ(t, 0) = 1, |Φ(t, x− y)| ≤ 1, (34)

Φ(t, x− y)
(x−y)→∞−−−−−→ 0, Φ(t, x− y)

t→∞−−−→ 0,

the solution (33) actually predicts on general grounds an exponential loss of coher-
ence in position, that is to say diagonalization in the localization basis. In fact
according to (34) diagonal matrix elements are left untouched by the dynamics,
which together with the fact that a characteristic function is actually a positive def-
inite function accounts for the correct probability and positivity preserving time
evolution. For growing time off-diagonal matrix elements are fully suppressed,
whatever the distance, while for fixed time evolution the reduction of off-diagonal
matrix elements depends on the relative distance (x − y), leading to a vanishing
contribution for macroscopic distances (provided the corresponding classical Lévy
process admits a proper probability density). An application of this general theoret-
ical treatment to actual physical systems and in particular to relevant experimental
situations relies on a choice of functions and parameters appearing in (32) dictated
by actual physical input. This has been accomplished in [45], where this general
scheme has been connected to actual experiments on decoherence, as well as theo-
retical predictions of decoherence effects when the reservoir inducing decoherence
is a quantum chaotic system.
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Quantum Open Systems
with Time-Dependent Control

Robert Alicki

1 Introduction

Any quantum device interacts with an environment and the resulting noise is a
main obstacle in the implementation of bold ideas of quantum computation and
large-scale quantum communication. The purpose of these notes is to present a
general formalism based on the first principles of Hamiltonian models which can
be used to describe mathematically and estimate numerically the influence of an
environmental noise on quantum devices controlled by time-dependent external
forces. We call them controlled quantum open systems (CQOS). The main idea
is to eliminate the degrees of freedom of the environment and use approxima-
tive expressions for the reduced dynamics of the quantum system (device)[1].
The main problem is related to the existence of multiple timescales in such mod-
els which make the reduced dynamics very complicated [2–4]. Therefore, we
restrict ourselves to several regimes of the parameters which allow the tractable
description. We begin with the discussion of Markovian approximation for the
case of time-independent controlling Hamiltonians which leads to the formal-
ism of completely positive quantum dynamical semigroups with Lindblad–Gorini-
Kossakowski–Sudarshan (LGKS) generators [5–9]. Spectral and ergodic properties
of dynamical semigroups satisfying detailed balance condition are briefly outlined.
Then, we describe the case of slowly varying external forces which also leads to
inhomogeneous in time Markovian Master Equations (MME) of LGKS type and
reproduces the laws of thermodynamics [10, 11]. Finally, the non-Markovian Born
approximation is discussed and the corresponding formula for an error is derived
[12, 13]. The last approach is illustrated by a generic mode l of the controlled spin-
boson system which can be applied to several implementations of controlled qubit
[14, 15].
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2 The Generic Model of CQOS

We consider a “small” open quantum system S with the corresponding Hilbert space
HS interacting with a “large” quantum reservoir R described by the Hilbert space
HR . The Hilbert space of the total composed system is a tensor product HS ⊗ HR .
The Hamiltonian of the total system reads

H (t) = (H 0
S + HC (t))⊗ IR + IS ⊗ HR + HSR, (1)

where H 0
S is a bare Hamiltonian of S, HC (t) describes the control over S, HR is the

reservoir’s Hamiltonian and HSR describes the interaction between S and R which
is always assumed to be weak. In the following we omit unit operators IS, IR . One
should notice that in this picture the control is perfect up to certain fluctuations
which are entirely described in terms of suitable reservoir models.

2.1 Notation and Definitions

Consider a general case of a quantum system with the Hilbert space H which
satisfies the Schrödinger equation with time-dependent Hamiltonian H (t) (we put
� ≡ 1):

d

dt
ψ(t) = −iH (t)ψ(t) . (2)

The solution of (2) can be written in terms of the unitary propagator U (t, s) on the
Hilbert space H as ψ(t) = U (t, s)ψ(s) and is given by the time-ordered exponential

U (t, s) = T exp
{−i

∫ t

s
H (u)du

} =

=
∞∑

n=0

(−i)n
∫ t

s
dtn

∫ tn

s
dtn−1 · · ·

∫ t2

s
dt1 H (tn)H (tn−1) · · · H (t1) (3)

satisfying the composition rule

U (t, u)U (u, s) = U (t, s) , U (t, t) = I, U (s, t) = U−1(t, s) = U †(t, s) . (4)

Unitary super-propagators on operator spaces of either trace class, bounded or
Hilbert–Schmidt operators acting on H are defined in a similar way:

U(t, s) = T exp
{−i

∫ t

s
H(u)du

}
, HX = [H, X ], (5)

U(t, s)X = U (t, s)XU−1(t, s) = U (t, s)XU †(t, s) = U (t, s)XU (s, t), (6)

and satisfy the composition rule U(t, u)U(u, s) = U(t, s).
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The perturbation analysis of a quantum dynamics will involve the following
second-order integral equation:

U (t, s) = U0(t, s)− i
∫ t

s
duU0(t, u)[H (u)− H0(u)]U0(u, s)−

−
∫ t

u
du
∫ u

s
dvU0(t, u)[H (u)− H0(u)]U0(u, v)[H (v)− H0(v)]U (v, s), (7)

where

d

dt
U (t, s) = −iH (t)U (t, s) , U (t, t) = I, (8)

d

dt
U0(t, s) = −iH0(t)U0(t, s) , U0(t, t) = I, (9)

valid for super-propagators also.

3 Reduced Dynamics

In the regime of a weak coupling to the environment we usually assume the product
state structure for the initial state of the total system

ρSR(0) = ρS(0)⊗ ρR (10)

with the fixed stationary state ρR of the reservoir and an arbitrary initial state of the
system ρS(0). The dynamics of the system S alone is obtained by the averaging over
the reservoir’s degrees of freedom by means of the partial trace operation TrR(·). We
first perform the transition to the interaction picture

ρS(t) = Λ(t, 0)ρS(0) = TrR
(
US(0, t)⊗ UR(0, t)U(t, 0)ρS(0)⊗ ωR

)
, (11)

where US(0, t) is generated by the renormalized time-dependent physical
Hamiltonian HS(t) = H corr

S (t)+ HC (t), with

H corr
S (t) = H 0

S + λ2 H corr
1 (t)+ · · · (12)

and UR(0, t) = exp{i[HR, ·]t} and then apply the partial trace. The interaction pic-
ture eliminates short-time oscillations which are, anyway, averaged out during real-
istic measurement procedures. The corrections to the bare Hamiltonian producing
the physical one compensate (in the given order with respect to λ) for the con-
tribution from the interaction with an environment. Therefore, we compute always
only the terms corresponding to purely dissipative effects assuming that the physical
Hamiltonian is given in advance.
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In the following, for the reason of clarity, we restrict ourselves to a simple inter-
action Hamiltonian HSR = λS ⊗ R with the standard assumption

Tr(ρR R) = 0. (13)

Here and in the following formulae, an S or Sα refers to an operator for the system
while an R or Rα refers to an operator for the reservoir. The generalization to generic
interactions of the form

HSR = λ
∑
α

Sα ⊗ Rα (14)

is straightforward.
A useful mathematical tool for the perturbative analysis of the reduced dynamics

is the cumulant expansion:

Λ(t, 0) = exp
∞∑

n=1

[λnK(n)(t)] . (15)

The first two terms K(1) and K(2) can be easily computed by comparison of the
expansions of both sides in (15). For the LHS we use (7) and (11). From (13) it
follows that K(1) = 0. In the most interesting cases the reasonable approach consists
in taking the Born approximation K(2) ≡ K:

Λ(t, 0) � exp[λ2K(t)]. (16)

Here

K(t)ρS =
∫ t

0
ds
∫ t

0
du F(s − u)S(s)ρS S(u)+ (similar terms), (17)

where similar terms are of the type S(s)S(u)ρS , ρS S(s)S(u), and their final con-
tribution is always computed at the end from the trace preservation condition. The
reservoir’s autocorrelation function F is given by the spectral density G:

F(t) = Tr(ρR R(t)R) = 1

2π

∫ ∞
−∞

eiωt G(ω)dω, (18)

where R(t) evolves according to HR and S(t) according to HS(t).
The double integral structure of (17) implies the quadratic behavior K(t) ∼ t2 for

short times and hence a Gaussian decay which is a basic assumption in the theory
of the Zeno effect.
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4 Markovian Dynamics

For longer times the decay of the autocorrelation function F(t) combined with the
rapid oscillations present in the time-dependent operators S(t) causes the super-
operator K(t) (17) to increase linearly in time. This is the main mechanism which
allows to use different types of Markovian approximations. In the following we
shall use a rather general definition of the Markovian approximation based on the
approximative relation

K(t) �
∫ t

0
L(s)ds, (19)

where L(s) is the Lindblad–Kossakowski–Gorini–Sudarshan (LKGS) generator. We
recall that any LKGS generator can be written in the form

LρS = −i[H, ρS]+ 1

2

∑
α

(
[Vα, ρS V †

α ]+ [VαρS, V †
α ]
)
, (20)

and for any τ ≥ 0 the map eLτ is completely positive (CP) and trace preserving. The
LKGS assumption can be justified as follows. The condition (19) implies that up to
the higher order corrections the Born approximation for the cumulant expansion
(16) coincides with the propagator for the following (generally inhomogeneous in
time) MME in the interaction picture

dρS(t)

dt
= L(t)ρS(t) . (21)

Therefore, the propagator Λ(t, s) = T exp
∫ t

s L(u)du can be written as the limit of
a product of completely positive maps:

Λ(t, s) = lim
n→∞ eL(un )(t−un ) · · · eL(u1)(u2−u1)eL(s)(u1−s) . (22)

For any CP map Λk = eL(uk )(uk+1−uk ) we can construct a unitary dilation, i.e., a
model of a reservoir with the Hilbert space HRk , the initial state ρRk and the total
unitary dynamics Uk acting on HS ⊗HRk such that

ΛkρS = TrRk

(
UkρS ⊗ ρRk U

†
k

)
. (23)

It follows that the reduced dynamics Λ(t, s) can be seen as an effect of the coupling
to a permanently “refreshed” reservoir such that the actual state of the composed
system is always a tensor product. This picture corresponds to the most general idea
of a memoryless (Markovian) model of the open system. One should notice that,
formally, the general choice of L(s), which does not satisfy the LKGS condition,
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is always possible. It leads to the so-called convolutionless approach to reduced
dynamics which, generally, has nothing to do with the Markovian modelling.

4.1 White-Noise Model

We begin with a naive Markov approximation which consists in replacing the envi-
ronmental observable R(t) by the white noise, i.e., a Gaussian stationary stochastic
process with the second moment given by

F(t) = aδ(t) , a > 0 . (24)

Then we obtain

L(s)ρS = aS(s)ρS S(s)+ (similar terms), (25)

which after transition to the Schrödinger picture yields the following MME:

dρS

dt
= −i[HS(t), ρS]− 1

2
λ2a[S, [S, ρS]] . (26)

The important feature of this equation is that the dissipative part is independent
of the Hamiltonian one. Although the “double commutator” generators are used to
describe initial stages of decoherence or continuous measurement processes they
cannot be considered as generic ones. There exist serious physical objections to the
naive Markovian approximation (24). First for many cases of reservoirs (e.g., elec-
tromagnetic field, phonons in solids) we have the following behavior in the domain
of low frequencies:

G(ω) ∼ ωd , G(0) = 0 =
∫ +∞
−∞

F(t)dt , (27)

and then the substitution (24) is inconsistent. Secondly, for heat baths the Kubo–
Martin–Schwinger (KMS) condition holds

G(−ω) = e−βωG(ω) , where β = 1

kT
, k denotes Boltzmann constant,

(28)
which for low temperatures T excludes even approximately a constant spectral den-
sity characterizing the white noise. Usually, this phenomenon is attributed to the
thermal memory time �/kT . Therefore, strictly speaking, the white noise approxi-
mation makes sense for T →∞ only.
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5 Weak-Coupling Limit for Constant Hamiltonian

We discuss briefly the derivation of the MME for the case of time-independent
controlling Hamiltonian HC (t) = HC based on the rigorous approach of Davies in
terms of the weak-coupling limit (WCL). We assume that the total physical Hamilto-
nian HS possesses well-separated Bohr frequencies, i.e., differences of the quantised
energies, which form a set {ω}.

We use the following decomposition into Fourier components:

S(t) = exp(iHSt)S exp(−iHSt) =
∑
ω

Sω exp(−iωt) , S−ω = S†
ω. (29)

The operators Sω are eigenvectors of the super-operator HS:

HS Sω ≡ [HS, Sω] = −ωSω . (30)

Then the Born approximation (17) reads

K(t)ρS =
∑
ω,ω′

SωρS S†
ω′

∫ t

0
ei(ω−ω′)udu

∫ t−u

−u
F(τ )eiωτdτ + (similar terms) . (31)

The main idea of WCL is to use the coarse-grained timescale t → t/λ2 and
formally go with the coupling λ to zero (van Hove limit). Physically, the idea of
WCL corresponds to the following approximations involving different timescales in
the system, and the decay properties of multitime correlation functions:

1. The integral

∫ t

0
ei(ω−ω′)udu ≈ tδωω′, (32)

which makes sense for t  max{1/(ω − ω′)}.
2. Limits in the integral

∫ t−u

−u
F(τ )eiωτdτ (33)

are replaced by the infinities

∫ t−u

−u
F(τ )eiωτdτ ≈ G(ω) =

∫ ∞
−∞

F(τ )eiωτdτ . (34)

3. Multitime correlation functions of the reservoir’s variables decay sufficiently fast
to justify the approximation (16).
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Applying those approximations we obtain

K(t)ρS = t
∑
ω

G(ω)SωρS S†
ω + (similar terms), (35)

and hence an MME of the Davies–LGKS form in the Schrödinger picture

dρS

dt
= −i[HS, ρS]+ 1

2
λ2
∑
ω

G(ω)([Sω, ρS S†
ω]+ [SωρS, S†

ω]) . (36)

Remark One should notice that the standard justification of the Markovian approx-
imation based on the assumption that the bath’s correlation time is short in com-
parison with the other timescales is not generally true. Quite often the decay of
correlations of bath’s variables F is power-like and does not possess any natural
timescale. In these cases Markovian behavior is a consequence of a “cooperation”
between system and bath dynamics.

For a generic interaction Hamiltonian (14) we obtain the following
Davies–LKGS generator:

LρS = 1

2
λ2
∑
α,β

∑
ω

Gαβ(ω)
(
[Sα(ω), ρS Sβ(ω)†]+ [Sα(ω)ρS, Sβ (ω)†]

)
, (37)

with the positive matrix of spectral densities Gαβ(ω)

Tr(ρR Rα(t)Rβ) = 1

2π

∫ ∞
−∞

eiωt Gαβ(ω)dω . (38)

It is often very useful to use the Heisenberg picture of the time evolution in terms of
time-dependent observables such that for any observable AS:

Tr(ρS(t)AS) = Tr(ρS AS(t)).

For the MME with the generator (37) its Heisenberg version reads

d AS

dt
= iHS AS + L∗AS , HS AS = [HS, AS], (39)

where

L∗AS = 1

2
λ2
∑
α,β

∑
ω

Gαβ(ω)
(

Sβ(ω)†[AS, Sα(ω)]+ [Sβ(ω)†, AS]Sα(ω)
)
. (40)
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5.1 Properties of MME for a Heat Bath

Assume that our system is coupled to a heat bath, i.e., a single reservoir in the
thermodynamic equilibrium state at the temperature T . Using the form (40) of the
Heisenberg generator with the KMS condition (28) one can prove by direct calcula-
tion the following properties:

1. The stationary state of MME in the Schrödinger picture is a Gibbs state at the
temperature T (LρT = 0):

ρT = e−HS/kT

Tre−HS/kT
. (41)

2. The Heisenberg generator is a normal (diagonalizable) operator on the Hilbert
space L2

T of operators with the scalar product

〈A, B〉T = Tr(ρT A†B) (42)

such that H commutes with L∗ and the quantum detailed balance holds

〈HS A, B〉T = 〈A,HS B〉T , 〈L∗A, B〉T = 〈A,L∗B〉T . (43)

3. Dissipativity condition is satisfied, i.e.,

L∗ ≤ 0 (44)

as an operator on L2
T .

4. Spectral decomposition holds (〈Xμ, Xμ′ 〉T = δμμ′):

AS(t) =
∑
{μ}

e−μt 〈Xμ, AS〉T Xμ , Imμ = ω, Reμ ≥ 0 . (45)

5. Under the conditions [Gαβ(ω)] > 0 and

{A; [HS, A] = [Sα(ω), A] = 0, for all ω} = CI,

the dynamical semigroup is exponentially relaxing, i.e.,

in the Schrödinger picture

lim
t→∞ exp

{
(−iH+ L)t

}
ρS = ρT , (46)

and in the Heisenberg picture

lim
t→∞ exp

{
(iH+ L∗)t

}
AS = Tr(ρT AS)I . (47)
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6 Adiabatic Control in the WCL

From the discussion of the approximations involved in the WCL derivation of the
MME (36) it follows that this method does not work for a general HS(t). However,
there exists an adiabatic window described by the following conditions concerning
the relevant timescales:

1.

typical
{ 1

ω − ω′
}
! variation time of HS(t), (48)

2.

variation time of HS(t)! relaxation time of S . (49)

Under the conditions (48) and (49) one can use the MME with the time-dependent
generator

dρS(t)

dt
= −i[HS(t), ρS(t)]+ L(t)ρS(t), (50)

where L(t) is obtained by the WCL procedure (37) with respect to HS(t).

6.1 A System Coupled to a Few Heat Baths

We consider now a quantum system controlled by slowly varying external fields
such that the conditions (48) and (49) are fulfilled. We assume also that its environ-
ment can be represented by several independent heat baths at different temperatures,
in general. Then the corresponding time-dependent generator satisfies

L(t) =
∑

m

Lm(t) , Lm(t)ρTm (t) = 0, (51)

with

ρTm (t) = e−HS (t)/kTm

Tre−HS (t)/kTm
. (52)

6.2 The Laws of Thermodynamics

The model described by (51) and (52) can be used to derive the laws of phenomeno-
logical thermodynamics. First, we define the basic quantities—energy (E), heat (Q),
work (W ):
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E(t) = Tr(ρS(t)HS(t)), (53)

d Q(t)

dt
= Tr

{dρS(t)

dt
HS(t)

}
,

dW (t)

dt
= Tr

{
ρS(t)

d HS(t)

dt

}
, (54)

and entropy

S(t) ≡ S(ρS(t)) = −kTr
(
ρS(t) log ρS(t)

)
. (55)

We compute the time derivative of the entropy

d S

dt
= −k

∑
m

Tr
(
[LmρS] log ρS

) =

= −k
∑

m

Tr
(
[LmρS][log ρS − log ρTm ]

)+
∑

m

1

Tm

d Qm

dt
, (56)

where

d Q

dt
= Tr

{dρS

dt
HS

}
=
∑

m

Tr
(
HSLmρS

) ≡
∑

m

d Qm

dt
(57)

and Qm is a heat supplied by the m-th heat bath.
We define the relative entropy for a pair of density matrices ρ, σ as

S(ρ|σ ) = Tr(ρ log ρ − ρ log σ ) ≥ 0 . (58)

For any CP trace preserving map Λ the following relation holds:

S(Λρ|Λσ ) ≤ S(ρ|σ ) . (59)

Take Λ = eτLm and σ = ρTm then the following inequality holds:

0 ≥ d

dτ
S(eτLmρ|eτLmρTm )|τ=0 = Tr

(
[LmρS][log ρS − log ρTm ]

)
. (60)

Now using Eqs. (53), (54), (56), and (60) we obtain:

1. First law of thermodynamics:

d E

dt
= d Q

dt
+ dW

dt
. (61)

2. Second law of thermodynamics:
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d S

dt
= κ +

∑
m

1

Tm

d Qm

dt
, (62)

where κ ≥ 0 is the entropy production.

7 CQOP in Non-Markovian–Born Regime

The aim of this section is to derive the expression for an error in the final state of the
controlled quantum device due to the generic weak interaction with an environment
(14). Comparing the actual dynamics Λ(t, s) with the ideal one US(t, s) acting on
the initial pure state ψ we define the error accumulated between the initial time
tin = −τ and the final one tfin = τ as

ε = 1− 〈US(τ,−τ )ψ,Λ(τ,−τ )(|ψ >< ψ |)US(τ,−τ )ψ〉 . (63)

Using the formulas for the propagators (3) and the second-order formula (7) we
obtain the dynamical map Γ in the Schrödinger picture describing the evolution of
S from tin = −τ to tfin = τ :

ΓρS = US(τ,−τ )ρS−
TrR

{∫ τ

−τ
ds
∫ s

−τ
du U0(τ, s)HSR U0(s, u)HSR U(u,−τ )ρS ⊗ ρR

}
. (64)

The Born approximation consists in the replacement

U(u,−τ )ρS ⊗ ρR → US(u,−τ )ρS ⊗ ρR .

ΓρS in the Born approximation possesses “almost CP structure” (CP up to the higher
orders with respect to the interaction)

Γρ = US

(
ρS +Φ(ρS)− 1

2
{B, ρS}

)
, (65)

where US ≡ US(τ,−τ ). The CP map Φ is called error map:

ΦρS =
∫ τ

−τ
ds
∫ τ

−τ
duTr

(
ρR Rα Rβ(s − u)

)
Sβ(s,−τ )ρS Sα(u,−τ ), (66)

where Sα(s, u) = US(u, s)Sα , Rα(t) = eitHR Rα .
The operator B, as mentioned before, can be computed at the end using the trace

preservation conditions which leads to the expression B = Φ∗ I ≥ 0.
It is convenient to introduce the Fourier picture with spectral densities (Rαβ(ω) ≡

1
2π Gαβ(ω) of Eq. (38))
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Tr
(
ρR Rα Rβ(t)

) =
∫ ∞
−∞

Rαβ(ω)e−iωt dω (67)

and defining

Yα(ω) =
∫ τ

−τ
Sα(s,−τ )e−iωsds (68)

to obtain

ΦρS =
∑
α,β

∫ ∞
−∞

dω Rαβ(ω) Yβ(ω)ρSY †
α (ω) . (69)

The relation (69) can be seen as a particular example of the quantum fluctuation–
dissipation theorem. Inserting Eqs. (69) and (65) into (63) we obtain the error for-
mula in the Born approximation in terms of the Fourier transforms:

ε = 〈ψ, Bψ〉 − 〈ψ,Φ(|ψ〉〈ψ |)ψ〉
=
∑
α,β

∫ ∞
−∞

dω Rαβ(ω)
(
〈ψ,Y †

α (ω)Yβ(ω)ψ〉 − −〈ψ,Y †
α (ω)ψ〉〈ψ,Yβ (ω)ψ〉

)
.

(70)
It is convenient to define

〈ψ,Y †
α (ω)Yβ(ω)ψ〉 − 〈ψ,Y †

α (ω)ψ〉〈ψ,Yβ (ω)ψ〉 = 2τ Sαβ (ω) . (71)

In order to find the meaning of Sαβ(ω) we introduce for any two random variables
(classical or quantum) their correlator F(ω) = [Fαβ(ω)] as

lim
τ→∞

1

2τ

∫ τ

−τ
ds
(
〈 fα(t + s) fβ(s)〉av − 〈 fα(t + s)〉av〈 fβ(s)〉av

)

=
∫ ∞
−∞

Fαβ(ω)eiωt dω . (72)

Putting fα ≡ Rα and 〈·〉av ≡ Tr(ωR ·) we obtain F(ω) ≡ R(ω).
Similarly, F(ω) ≡ S(ω) for fα ≡ Sα, 〈·〉av ≡ 〈ψ, ·ψ〉 only if τ is long enough.

Therefore, the error formula (70) can be expressed in terms of two correlators
R(ω) = [Rαβ(ω)] and S(ω) = [Sαβ(ω)] multiplied by the operation time 2τ :

ε = 2τ
∫ ∞
−∞

dω Tr
(
R(ω)S(ω)

)
. (73)

Equation (73) provides a useful starting point for the analysis of different error
reduction strategies.
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7.1 Error Reduction Strategies

The error formula (73) has a simple physical meaning. In the small error regime the
error grows linearly with time and is proportional to the overlap of two “spectral
densities” corresponding to the dynamics of the system and the reservoir, respec-
tively. This overlap is related to the energy conservation principle—the transmis-
sion of energy and information is possible between the “modes” of the system and
the reservoir with equal frequencies only. Therefore, the fundamental strategies of
decoherence reduction are the following:

1. Slow gates – applicable for environments with low frequency behavior

R(ω) ∼ ωκ , κ > 1 . (74)

Indeed, for slow gates the support of S(ω) is concentrated in the regime of low
frequencies, where R(ω) is small.

2. Fast gates – applicable for environments with flat R(ω) � R which leads to
the error proportional to the duration of the gate. If R(ω) rapidly decreases
above certain cut-off frequency then the fast gate strategy is even more effective
because S(ω) is concentrated in the regime of high frequencies.

3. Decoherence-free subspaces (subalgebras) – applicable for systems with a sym-
metric coupling to an environment. Due to a certain symmetry of the system-bath
coupling there exists a subspace of ψs such that S(ω) = 0 for all relevant fre-
quencies. From (70) it implies

Yα(ω)ψ = λα(ω)ψ , λα(ω) ∈ C . (75)

Such initial states evolve without errors in the lowest order approximation. A
linear subspace spanned by those ψs is called decoherence-free and the typical
example is given by the superradiance phenomena where the symmetry corre-
sponds to the approximative invariance of the coupling to the electromagnetic
field with respect to permutations of atoms.

8 Controlled Spin-Boson System

The simplest model of CQOP consists of a qubit, representing different systems
like spin-1/2, “2-level atom,” 2-configurations of a molecule, quantum dot, etc., and
described by the Pauli matrices σx , σy, σz as basic observables. The qubit is coupled
to a reservoir modelled by the (infinite) system of harmonic oscillators (bosonic
field). The bath can be treated as a gas of noninteracting bosons (photons, phonons,
etc.) described by the family of annihilation and creation operators satisfying canon-
ical commutation relations:

[ak, ak′ ] = [a†
k, a†

k′ ] = 0 , [ak, a†
k′ ] = δkk′ . (76)

Here k is typically the wave vector of the given mode and ωk its frequency.
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We restrict ourselves to the following Hamiltonian describing, for example, an
optically controlled exciton in a quantum dot coupled to acoustical phonons:

H ′′(t) = 1

2
Ωσz + 1

2
E(t)

(
eiΩtσ+ + e−iΩtσ−

)

+
∑

k

ωka†
kak + σz ⊗

[∑
k

f ∗k ak + fka†
k

]
. (77)

Here E(t) is the envelope of the laser pulse used to perform gates. The state |0〉 of
the qubit represents the absence of an electron in a dot and the state |1〉 its presence.

In the first step we eliminate oscillations with the frequency Ω by the transition
to the interaction picture Hamiltonian (with respect to 1

2Ωσz):

H ′(t) = E(t)σx + HR + HSR . (78)

The coupling to the environment cannot be treated as a weak one. The electromag-
netic interaction of an electron with a lattice strongly modifies the local state of
the later. Therefore, before applying any “weak coupling” type of approximation
one should find a new decomposition of the total system into S and R introducing
the notion of a dressed system (dressed qubit). Define Weyl unitary operators W (g)
acting on the Hilbert space F of the harmonic oscillators bath as

g ≡ {gk} , W (g) = exp
∑

k

{
g∗kak − gka†

k

}
(79)

with the properties

W (−g) = W (g)† , W (g)W (h) = e
i
2 Im〈g,h〉W (g + h), (80)

W (g)akW †(g) = ak + gk , W (g)a†
kW †(g) = a†

k + g∗k . (81)

Then we introduce the dressing unitary transformation acting on the total Hilbert
space C2 ⊗ F:

W = |0〉〈0| ⊗W ( f/ω)− |1〉〈1| ⊗W †( f/ω), (82)

where f/ω = { fk/ωk}.
The dressed Hamiltonian H (t) =WH ′(t)W† can be easily computed:

H (t) = 1

2
E(t)σx ⊗ cos

{
2i
∑

k

( fk

ωk
a†

k −
f ∗k
ωk

ak

)}
(83)

+1

2
E(t)σy ⊗ sin

{
2i
∑

k

( fk

ωk
a†

k −
f ∗k
ωk

ak

)}
+ HR .
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One should notice that the interaction between the dressed qubit and the remaining
degrees of freedom is present during gate operation only!

Now the weak-coupling approximation can be used and we restrict ourselves to
the first order terms with respect to f/ω:

H (t) � E(t)σx + HR + E(t)σy ⊗ i
∑

k

( fk

ωk
a†

k −
f ∗k
ωk

ak

)
. (84)

8.1 Remarks

1. The dynamics governed by (83) or (84) is a strongly non-Markovian reduced
dynamics for the dressed qubit and hence produces non-Lorentzian spectrum
(observed in experiments).

2. Electromagnetic bath, not included in our model, leads to an independent, essen-
tially Markovian recombination process with a relatively long time τM . There-
fore, we expect here a certain trade-off between fast and slow gate strategies of
error reduction.

8.2 Error for a Single Bit Flip

The formulas for the error in Born approximation derived in the previous section
can be applied to compute an averaged error of a single bit flip gate in our model.
We assume a Gaussian pulse of the duration τg corresponding to a bit flip:

E(t) =
√
π√

2τg

e−
1
2 (t/τg)2

. (85)

The zero-temperature spectral density of the acoustical phonons behaves like

R(ω) = R0ω
3 , ω ∈ [0, ωD] , R(ω) = 0 otherwise , (86)

where ωD denotes the Debye frequency. The straightforward estimation based on
the formula (73) and including the Markovian recombination process gives

ε � π2

3
R0

1

τ 2
g

+ τg

τM
(87)

with a trade-off between short and long τg . More realistic behavior of ε(τg) involv-
ing experimental data for R(ω), τM , finite temperature and the cut-off parameters
(quantum dot size) can be obtained numerically.
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Five Lectures on Quantum Information
Applications of Complex Many-Body Systems

Sougato Bose

1 Introduction

In recent years it has been realized that utilizing the full potential of quantum
mechanics enables one to perform certain particularly important computational
tasks much faster than ever possible with conventional (classical) computing tech-
nology [1]. In addition, quantum mechanics enables completely novel forms of
cryptograpy and communication [2]. For the above tasks it is essential to encode
information in quantum mechanical versions of bits or “qubits” (quantum mechan-
ical two-state systems), typical examples being the polarization of a photon or the
spin of an electron. For quantum computation in particular, very large collections
of qubits are required. In general, larger the collection of qubits, more powerful
the quantum computer. While few qubit quantum processors are already available,
increasing the number of qubits by significant amounts is a problem that needs to
be solved before truly powerful quantum computers come into being. It is from this
point of view that the current set of lectures can be motivated. Complex many-body
systems, a typical example being magnets, are each natural collections of several
continuously interacting qubits or other identical systems. Can this natural resource
of qubits be exploited for quantum computation or at least for tasks allied to quan-
tum computation such as building small automata for logic gates or even simply for
constructing a connection bus between two quantum computers? These are some of
the questions that we will try to address in our lectures.

The topic of these lectures can be motivated in yet another way. An ideal quantum
computer itself is the ultimate example of an engineered and controllable many-
body quantum system. An example is provided in Fig. 1(a), which shows a designed
system of regular structure, each of whose elements (which are qubits) can be indi-
vidually controlled and measured. Additionally, one must be able to switch on and
off the interaction between any two qubits of a quantum computer controllably at
any time. So one can ask what happens if some of this control is relaxed? Suppose
the interactions are frozen or permanent or can be switched on only all at once?
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(a)

(b)

Fig. 1 Part (a) of the figure depicts an ideal quantum computer as the ultimate example of an
engineered and controllable many-qubit system. The double-ended block arrows show interactions
that should be switchable at will and the single-ended block arrow depicts the control/observation
of a single qubit by external fields/probes. Part (b) of the figure depicts a typical (more natural, less
designed) quantum many-body system in which interations (double-ended block arrows) between
the qubits are permanent and external fields/probes (single-ended block arrow ending with the
brace denoting the region influenced by it) can only address/access many of the qubits at once

Suppose the qubits cannot be individually manipulated but only in a coarse grained
sense, i.e., as many qubits at once? This reduced control situation is depicted in
Fig. 1(b). Under such reduced control, the system becomes essentially equivalent,
as far as its Hamiltonian (and thereby its equilibrium states and dynamical evolution)
is concerned to natural quantum many-body systems such as a magnet. In a magnet,
for example, interactions are constant and uncontrollable and too many spins are
packed together to be individually addressed or manipulated. This is how the topic
of whether one can accomplish any useful quantum information processing with a
many-body system automatically arises. It may come as a surprise that even with
the above reduced degree of control, one can indeed accomplish non-trivial tasks
such as quantum communication, and this will be one of the topic of lectures 3
and 4. For designed many-body systems such as arrays of quantum dots or Joseph-
son junctions, it might be possible to individually address and manipulate quantum
systems, but controllable switching of interactions may yet be impossible as the
interaction depends on the placement of the elements of the array and may be frozen
in time. These slightly more controllable quantum many-body systems can be made
to accomplish quantum computation, as we will see in Lecture 5. In Lecture 2, we
will take the modest step of examining whether quantum many-body systems can
merely serve as a resource for truly “quantum” correlations or entanglement. This
will provide the impetus for the more ambitious program of the later lectures. In this
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very first lecture, we will present the key notions from quantum information that will
be required in the subsequent lectures. We will also introduce typical examples of
many-body systems and the type of Hamiltonians that govern them.

2 Lecture 1

In this lecture, we will introduce those basic notions of quantum information that
are required for following the rest of the lectures.

2.1 Quantum Entanglement

Entanglement is the truly “quantum” part of the correlations that exist between two
systems when they are in states such as |ψ−〉 = 1√

2
(|0〉|1〉−|1〉|0〉) which can never

be written down as a pure product of states of the individual systems such as in the
form |χ〉|φ〉 and not even in the form of a probablility distribution over such prod-
ucts such as

∑
i pi |χi 〉〈χi | ⊗ |φi 〉〈φi | (to take into account the possibility of mixed

states). The study of entanglement is a huge area of quantum information science,
and we refer the reader to a review such as Ref. [3]. An important point to note is that
entanglement is quantifiable. Simply stating, the “harder” it is to approximate a state
as a probability distribution over products of pure states, the “higher” is its entangle-
ment. For example, for the case of two qubits, the state |ψ−〉 is the most entangled,
whose amount is generally set to unity, while a product state of the form |χ〉|φ〉 or
mixed states of the form p|χ1〉〈χ1|⊗|φ1〉〈φ1|+(1− p)|χ2〉〈χ2|⊗|φ2〉〈φ2| have zero
entanglement. In the following lectures, we will require quantifications of entangle-
ment. This is for two reasons. First, being an uniquely quantum feature, more the
entanglement between constituents of a complex many-body system, more is its true
quantum nature evident. Thus we will need measures of entanglement in Lecture 2,
when we analyze how truly quantum different many-body systems are—setting the
background for quantum information applications of such systems. Secondly, the
more entangled a quantum state is, it is better for uniquely quantum communication
applications such as quantum teleportation [4], whereby one can use an entangled
state shared between well-separated parties to transmit an arbitrary quantum state
from one party to another using measurements and sending only classical bits from
one party to another. Thus in Lectures 3 and 4, when we want to use a many-body
system as a quantum communication channel, we can investigate how it transfers
entanglement. The higher the entanglement that can be transmitted through such a
channel, the better it is at quantum communications—thus we will again require a
quantification of entanglement.

For the purposes of this lecture series, it suffices to note how, given a density
matrix ρ of two qubits (in an arbitrary and generally mixed state), its entanglement
can be computed [5]. The procedure is to first compute the matrix

ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy, (1)
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where the complex conjugate ρ∗ of ρ is taken in the basis |00〉, |01〉,|10〉,|11〉. Then
the entanglement can be quantified by a number called concurrence E given by [5]

E = max{0, λ1 − λ2 − λ3 − λ4}, (2)

where the λi s, i = 1, . . . , n, are the square roots of the eigenvalues of ρρ̃ in decreas-
ing order.

A second measure of entanglement that we will use in these lectures applies to
the entanglement of two systems of arbitrary dimensions (such as the case when
each system has several qubits, rather than a single qubit), but only for pure states.
This is computed by first computing the reduced density matrix ρA of system
A from the state ρAB of the total system using the procedure ρA = TrB(ρAB),
where TrB( ) denotes partial tracing over system B. The entanglement of the
two systems A and B in the pure state ρAB is then given by the von Neumann
entropy [6]

S = −Tr{ρA log2 ρA}, (3)

which in terms of the eigenvalues ηi of ρA, is S = −∑i ηi log2 ηi .

2.2 Fidelity

In order to judge how well a quantum state is transferred by a many-body system (or
more specifically a spin chain) in Lecture 3, we will have to use a figure of merit.
Suppose the state that is put in a channel is the pure state |ψin〉 and the state that
comes out of the channel is ρout (the output state is depicted by a density operator to
allow for the possibility for it to be a mixed state). Then a measure of the quality of
the transfer is defined by the fidelity:

F = 〈ψin|ρout|ψin〉, (4)

which is always between 0 and 1, with higher value meaning better transfer (it is
unity for perfect transfer). A fidelity of 2/3 can already be obtained measuring a
state and simply reconstructing it from this data. Thus F needs to be greater than 2/3
for any quantum communication scheme for it to be any better than straightforward
classical communication.

2.3 Operations Required to Build a Quantum Computer

Qubits, which can exist in an arbitrary superposition of states |0〉 and |1〉, are gen-
erally assumed to be the information bearing degrees of a quantum computer. Two
types of operations on a collection of qubits are required in order to build a univer-
sal quantum computer. First, one must be able to rotate the state of a qubit, which
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is represented as a point on a sphere (the Bloch sphere) to anywhere else in the
Bloch sphere. In other words, one must be able to act on a qubit in any initial state
α|0〉+β|1〉 and obtain the state α

′ |0〉+β
′ |1〉. These first class of required operations

can be called arbitrary local unitary operations. Second, one should be able to per-
form at least one unitary operation which can entangle any two qubits of the quan-
tum computer [7]. This second class of operations can be called entangling unitary
operations, and along with arbitrary local unitary operations, is sufficient to perform
universal quantum computation. To clarify a little, given any quantum algorithm
(which is just a unitary operation on a large collection of qubits), one can imple-
ment it through a series of arbitrary local unitary operations alternating with several
entangling unitary operations on pairs of qubits of the collection. These elementary
operations are called quantum gates. In fact, if the reader has heard about certain
canonical two-qubit unitary operations such as the controlled NOT (or CNOT) and
controlled phase gates, these are specific examples of two-qubit entangling unitary
operations (any such two-qubit entangling operation suffices). For those readers not
familiar with such gates, we give an example of the controlled phase or C Z gate
which converts: |00〉 → |00〉,|01〉 → |01〉,|10〉 → |10〉,|11〉 → −|11〉.

In Lecture 5, when we want to show that a certain many-body system, more
specifically a spin chain, can be made to work as a quantum computer, all we
will have to show is that both arbitrary single-qubit gates and a certain entan-
gling two-qubit gate can be accomplished on/between qubits of such a quantum
computer.

2.4 Many-Body Spin Systems: Examples

Spins are systems endowed with tiny quantized magnetic moments. Bulk materi-
als often have a large collection of spins permanently coupled to each other. The
mutual interactions of these spins makes them prefer alignment or anti-alignment
with respect to each other, resulting in diverse phenomena such as ferromagnetism
and anti-ferromagnetism. A spin chain models a large class of such materials in
which the spins are arranged in a one-dimensional lattice and permanently coupled
to each other, usually with an interaction strength decreasing with distance. A com-
mon form of the model Hamiltonian for the interaction between the i th and the j th
spin is written as

Hi j = Ji j Si · S j , (5)

where Si · S j ≡ Si
x S j

x + Si
y S j

y + Si
z S j

z and Si
x , Si

y, Si
z are the operators for the com-

ponent of the i th spin along the x, y and z directions, respectively. In particular,
when all the spins are spin-1/2 systems, Sx , Sy and Sz stand for the familiar Pauli
matrices σx , σy and σz . A Hamiltonian of the above form is termed as an exchange
interaction as it can arise in from the pure exchange electrons between neighboring
atoms in a metal. It is also called the Heisenberg interaction after its inventor. In



102 S. Bose

particular, the specific Hamiltonian we have written above is called the isotropic
exchange interaction. It is, in fact, the most natural form of interaction between
spins. In this chapter we will also encounter a variant of the above interaction which
has an anisotropy

HXY
i j = Ji j (Si

x S j
x + Si

y S j
y ), (6)

which is called the XY interaction. We will be primarily concerned with chains of
spin-1/2 systems in this chapter. At an opposite extreme of anisotropy, there is also
another type of spin chain called the Ising spin chain with the Hamiltonian:

HI
i j = Ji j Si

z S j
z . (7)

3 Lecture 2

In this lecture, we are going to ask the simplest possible question of how much
entanglement exists “inside” a condensed matter system in its stationary states such
as the ground state and the thermal states at various temperatures. Why is this
question important? This is because the ultimate aim of these series of lectures is
to show how many-body systems may be made to process quantum information.
Naturally, the constituents, such as individual spins, of these many-body systems
will be involved in the processing of quantum information. Thus one needs to be
sure that these are bona-fide quantum mechanical systems. One way to be sure is
to compute that entanglement between them in most natural states of the system
such as ground and thermal states. The amount of this entanglement will tell how
much quantum mechanically the constituents of a many-body system are behaving,
and indeed thus they fulfill the basic criterion of being truly quantum, so that one
can think of information processing with them storing quantum information. We
should note that just proving that they are behaving quantum mechanically (namely
being highly entangled with each other) in a stationary state in equilibrium with
the environment does not mean that this state itself serves as a good starting state
for quantum information processing. Neither does it prove that during dynamics
they will continue to behave truly quantum mechanically despite their interaction
with their environment. However, computing entanglement is a good starting point
for thinking quantum mechanically about the ingredients of a many-body system.
Additionally, the entangled state of multiple particles inside a many-body system
may serve as a resource extractable and usable in various applications where shared
entanglement is necessary.

Historically, the entanglement inside complex many-body systems was the first
issue to be examined and so much work has been done that it is literally impossible
to cover them in one lecture. For an extensive review, one can look up Ref.[8]. Here
I will take a single simple example and try to illustrate all the various kinds of
entanglement measures generally computed for quantum many-body systems and
offer what we think are reasonable motivations for studying these measures. The
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model will be an open-ended chain of four spin-1/2 particles coupled through a
nearest-neighbor isotropic Heisenberg interaction, so that the Hamiltonian is

H =
3∑

i=1

σ i · σ i+1. (8)

The ground state of this chain

|GS〉 = (

√
2

3
|ψ−〉|ψ−〉 − 0.1494(|00〉|11〉 − |01〉|01〉 − |10〉|10〉 + |11〉|00〉) (9)

is manifestly an entangled state (just looking at the form of the state is enough to spot
that) and for a long time condensed matter physicists have known that the ground
states of such systems are indeed entangled. What is more important, though, is the
“amount” of entanglement between two spins of the system. This had not been com-
puted till very recently, and in fact, well after the advent of quantum information. To
compute the entanglement, we first obtain the reduced density matrix ρi j of the spins
i and j . From the expression of |GS〉, it is clear that ρ12, for example, is a mixed
state with a significant proportion (2/3) of the maximally entangled state |ψ−〉. The
entanglement between spins i and j is computed as the concurrence E from the
formula given in Section 2.1. However, it is worth mentioning here that because
of certain symmetries of the Heisenberg model, the concurrence E reduces to a
very simple formula and one need not involve all elements of the reduced density
matrix ρi j for the calculation of concurrence. Note that all the states involved in the
expression for |GS〉 have the same number of zeros. This is a consequence of the
commutation of H with

∑
i σ

i
z and holds for all eigenstates of H, and consequently

also for their mixtures such as thermal states. It is then easy for the reader to verify (I
leave it as an exercise here) that the density matrix ρi j cannot have any off-diagonal
terms (or coherence) between spaces with different values of σ i

z+σ
j

z . In the standard
basis |00〉, |01〉, |10〉, |11〉, ρi j will thus be of the form

⎛
⎜⎜⎝

x 0 0 0
0 y1 z 0
0 z∗ y2 0
0 0 0 w

⎞
⎟⎟⎠ .

For such a simple form of ρi j , the concurrence is given by the simple formula E =
2 max{0, |z| − √xw}.

The concurrence between spins 1 and 2 is found to be 0.866, which is quite
high (the highest possible value, for a maximally entangled state, being 1). These
are nearest neighbors. On the other hand, no entanglement exists between 2 and 3,
though they are nearest neighbors (the entanglement pattern of the chain is dimer-
ized because of its open ends [9]) and there is no entanglement between any of
the non-nearest neighbor spins (such as 1 and 3 or 1 and 4). Interestingly, the
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entanglement between 1 and 2 does not die down completely even when the sys-
tem is put in a thermal state (in a thermal equilibrium with its environment at a
temperature T ) given by

ρ = e−H/K B T /Z , (10)

where K B is the Boltzmann constant and Z is the partition function given by
Z = ∑k e−Ek/Kb T , where Ek are the eigenvalues of H. It is, of course, trivial that
when the system is at a temperature such that K B T ! 1 (as the strength of the
Hamiltonian H is 1), only the state |GS〉 is significantly populated, and entangle-
ment is the same as that in the state |GS〉. What is however surprising is the fact
that even when K B T ∼ 3 (the effect of temperature is not only comparable, but also
higher than the strength of the Hamiltonian), the entanglement between spins 1 and
2 still persists, and the concurrence equals 0.06. This kind of entanglement which
exists between the constituents of a physical system in its thermal state is called
thermal entanglement [10].

An additional interesting feature is that the entanglement between further neigh-
bors in the ground state can also be switched on by applying a magnetic field to the
system. For example, for a magnetic field B = 2, the ground state becomes

|GS(B = 2)〉 = 0.2706(|0001〉 − |1000〉)+ 0.6533(−|0010〉 + |0100〉). (11)

The concurrence of spins 1 and 2 and of spins 1 and 3 (next nearest neighbor)
are both 0.3536, while that of 1 and 4 (farthest neighbors) is 0.1464. One can call
this entanglement magnetic entanglement [10]. In fact, it has been shown that a
magnetic field may be used to prepare a multi-spin entangled state as a ground state
of a Heisenberg Hamiltonian in which each pair of spins in a chain, irrespective of
their distance, are entangled with each other [11].

In the context of the above kind of entanglement, namely that between two spins
in a spin chain system in its ground/thermal state without doing/performing anything
on the system, calculations have actually been done for long chains using analytic
results known about the correlation functions, which have for long been calculated
in condensed matter physics. This is possible because, in the end, all the elements
of the density matrix are given in terms of the expectation values of 〈σ i

α〉 (magne-
tization) and 〈σ i

ασ
j
β 〉 (correlation functions), where α/β run over x, y and z. Thus

analytic computations of the concurrence is possible from the correlation functions,
but generically, only a combination of them. One should be warned, for example,
that two states which have the same amount of correlations in a certain direction do
not necessarily have the same amount of entanglement. For example, the states |ψ−〉
(ground state of a 2-spin Heisenberg antiferromagnet) and |01〉 (one of the ground
states of a 2-spin Ising antiferromagnet) both have correlation 〈σ 1

z σ
2
z 〉 = −1, but

only the first state is entangled. By computing entanglement from combinations
of correlation functions, it has been shown that near quantum phase transitions
[12]—when the ground state of certain quantum many-body systems undergo a
sudden “qualitative” change due to the variation of a parameter of the Hamiltonian,
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Fig. 2 A pictorial representation of the different types of entanglement usually computed for
many-body systems. Part (a) shows the simplest form of entanglement that one can study, namely
that between two spins A and B of a many-spin system. Part (b) shows two subsystems A and
B, each entire block of spins by themselves, between which entanglement can also be studied.
Part (c) shows the process of measuring several spins of a system to localize entanglement in the
unmeasured spins A and B

the entanglement between two spins i and j , usually nearest and next nearest
neighbors, can peak [13, 14]. Speaking very roughly and qualitatively, the ground
state near a quantum phase transition is a highly entangled state because of a com-
petition between different ordering tendencies of different terms of a Hamiltonian.
On either side of the transition different tendencies win and impose their order,
while at the transition neither can win and only an entangled state can be the lowest
energy state.

The entanglement between two constituents of a many-body system is not the
only type of entanglement which can be computed to characterize the true quantum
aspects of a many-body system. In fact, Fig. 2 shows three different types of entan-
glement that have been computed for many-body systems. In Fig. 2(a), the systems
A and B between which entanglement is computed are depicted to be individual
spins. This was the case we were discussing above, and one of the latest develop-
ments in this category is the observation that if spins A and B are weakly coupled
to the rest of the spin system, they could even be maximally entangled, such as in
a state |ψ−〉, in the ground (T = 0) state [15]. This type of entanglement has been
termed as long distance entanglement.

Generically, the entanglement between two spins of a many-spin system ignores
a lot of the entanglement which is present within the system. Such as, in our above
example, when we compute the entanglement of spins 1 and 4 of our four spin sys-
tem described by H, or separately that between spins 2 and 3, this entanglement does
not tell us fully about the entanglement between two blocks, one containing 1 and
2 and the other containing 3 and 4. Thus the computation of entanglement between
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blocks has also recently been a popular area of research, a situation depicted in
Fig. 2(b), where the blocks are collections of spins encircled as A and B. As the
full system is in a pure state, the entanglement can easily be computed as the von
Neumann entropy of either the block A or the block B, as in Eq. (3). For example,
for the state |GS〉, the entanglement between block A consisting of spins 1 and 2 and
block B consisting of spins 3 and 4 is 0.4608. Clearly the entanglements between
the individual spins do not reveal this entanglement in the sense that neither of the
spins in block A are individually entangled with either of the spins in block B.
Incidentally, the entanglement between the blocks A and B increases to unity by
applying a magnetic field to reach the ground state |GS(2)〉. However, this is not
the limit of the entanglement between the blocks as they are each two-state sys-
tems. For example, by making the coupling between spins 2 and 3 much stronger
that the other couplings in the system, the entanglement between the blocks can
be made to approach their maximal value of 2. This happens because the ground
state assumes a form where 1 and 4 are in a singlet and 2 and 3 are in another
singlet—the mechanism here is the same as that leading to long distance entan-
glement of spins weakly coupled to a spin chain [15]. For an order of magnitude
difference of the couplings, the entanglement is about 1.97 and it grows to 1.99
as the couplings are made two orders different. There is though a price to pay, for
each order of change of the ratio of the couplings, the energy separation of the
ground state with the next energy eigenstate decreases—so that the entanglement
would be demise fast at finite temperature. In general, the block entanglement, not
restricted in amount by the dimensions of individual spins, may grow with lengths
of the blocks and may even diverge with the length in certain circumstances, though
this may come at the price of the ground state becoming very close to the low-
est excited state (the reason for these states to come close may differ from case
to case). This is precisely the situation near to a quantum phase transition (or a
quantum critical point) where the entanglement between blocks of contiguous spins
is found to diverge as log N , where N is the length of a block [16–18]. On the other
hand, for gapped systems, such as certain spin-1 chains, the entanglement of two
blocks saturates to a finite value and remains so irrespective of the length of the
blocks [19].

Yet another type of entanglement which has been computed in spin chains is
called localizable entanglement [20] and its definition can be understood by look-
ing at Fig. 2(c). Here the intermediate spins of a many-spin system are individually
measured to entangle the spins most distant from each other. The highest amount
of entanglement that can be established between the unmeasured spins, such as
spins A and B in Fig. 2(c) by optimizing the measurement of the other spins, is
called the localizable entanglement. In this context, it is worth pointing out that
there exist curious many-qudit (quantum d-dimensional systems) systems in whose
ground state the entanglement establishable between any two of the qudits is always
unity (equivalent to that of a two-qubit maximally entangled state) even when all
the other qudits are measured completely randomly (i.e., in random bases obtaining
random outcomes) [21].
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Before concluding this section we should point out that in addition to spin chains,
harmonic oscillator chains (in both ground [22] and thermal [23] states) has been
another system studied widely for the entanglement that exists naturally inside them.

4 Lecture 3

In this lecture we will study the possibility of using spin chains as channels for
quantum communication. The main motivation for this is to do away with optics
when connecting solid state based quantum registers. The array of spins itself serves
as an “all solid-state” bus for connecting the registers.

4.1 A Simple Spin Chain Quantum Communication Protocol

Let us now present one of the simplest possible protocols for quantum communica-
tion through spin chains. This is based on the scheme presented in Ref.[24], where
the idea of using a spin chain as a communication channel was first introduced. The
simplest possible spin chain is one composed of qubits. We start our protocol with
the spin chain initialized in a very simple state, such as the one in which all spins are
in the state |0〉. We will have to choose the couplings Ji j in Eq. (5) in such a manner
that initialization of the spin chain to such a state is easy. Accordingly, we choose
Ji j < 0, which means that the spin chain describes a ferromagnet. The ground state
of a ferromagnet in a magnetic field, however weak, is a symmetry broken state in
which all spins align with the direction of the field. For example, all spins could be
pointing down. For communication, Alice places an arbitrary quantum state at one
end of the spin chain in such an “all down” state. This is depicted in the upper part
of Fig. 3, where Alice has placed an arbitrary state on the first spin of the chain,
while all the other spins are still in the down state. Due to the natural evolution of
the chain this state both disperses and propagates along the chain. As a result of this

Fig. 3 The simplest spin chain communication protocol. A spin-1/2 ferromagnetic spin chain with
all spins facing down is the quantum channel. Alice simply places a quantum state at one end of
the chain and Bob simply picks up a close approximation of this state from his end of the spin
chain after waiting a while
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cos θ
2

ALICE

eiφ sin θ
2

Fig. 4 The figure shows how quantum information is transmitted down a spin chain in the simplest
protocol. The chain goes to a superposition of its ground state and a time-evolving state. The
time-evolving state transmits a spin flip as a series of wave-packets which travels towards Bob
while dispersing at the same time

evolution, the state of the spin at Bob’s end of the chain will vary with time (see
Fig. 4). Bob now chooses an optimal moment of time in a long interval (as long
as he can afford to wait!) to receive Alice’s state. This moment of time is carefully
chosen so that the state of the spin at Bob’s end of the chain is as close as possible
to the one that Alice intended to transmit. At this optimum time, Bob simply picks
up the spin at his end of the chain to conclude the communication protocol.

4.2 Formula for Fidelity of the Above Quantum Communication
Protocol

Say there are N spins in the chain and these are numbered 1, 2, . . . , N as shown in
Fig. 3. The Hamiltonian is given by only nearest neighbor interactions, the interac-
tions are uniform with equal strength J at each site and in a uniform magnetic field,
i.e.,

H =
∑

i

J σ i · σ i+1 −
N∑

i=1

Bσ i
z . (12)

In the above equation σ i = (σ i
x , σ

i
y, σ

i
z ) in which σ i

x/y/z are the Pauli matrices for
the i th spin, Bi > 0 are static magnetic fields and J < 0 are coupling strengths.
H describes a ferromagnet with isotropic Heisenberg interactions. As mentioned
above, we initialize the ferromagnet in its ground state |0〉 = |000 . . . 0〉 where |0〉
denotes the spin down state (i.e., spin aligned along −z direction) of a spin. This
can be accomplished easily for a ferromagnetic system by cooling and applying a
magnetic field, however small. We will set the ground state energy E0 = 0 (i.e.,
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redefine H as E0 + H) for the rest of this chapter. We also introduce the class of
states |j〉 = |00 . . . 010 . . . .0〉 (where j = 1, 2, . . . ,N) in which the spin at the j th
site has been flipped to the |1〉 state. We now assume that the state sender Alice
is located closest to the first spin and the state receiver Bob is located closest to
the N th spin. As mentioned before, to start the protocol, Alice simply places the
state she wants to transmit to Bob on the first spin at time t = 0. Let this state be
|ψin〉 = cos (θ/2)|0〉 + eiφ sin (θ/2)|1〉. We can then describe the state of the whole
chain at this instant (time t = 0) as

|Ψ (0)〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉. (13)

Bob now waits for a specific time till the initial state |Ψ (0)〉 evolves to a final state
which is as close as possible to cos θ

2 |0〉 + eiφ sin θ
2 |N〉. As [H,

∑N
i=1 σ

i
z ] = 0, the

state |1〉 only evolves to states |j〉 and the evolution of the spin chain (with � = 1) is

|Ψ (t)〉 = cos
θ

2
|0〉 + eiφ sin

θ

2

N∑
j=1

〈j|e−iHt |s〉|j〉. (14)

The state of the N th spin will, in general, be a mixed state, and can be obtained
by tracing off the states of all other spins from |Ψ (t)〉. This means that the den-
sity operator ρout of the output state is obtained by Tr1,2,...,N−1(|Ψ (t)〉〈Ψ (t)|), where
Tr1,2,...,N−1 means tracing over the states of the systems 1 to N − 1. This evolves
with time as

ρout(t) = P(t)|ψout(t)〉〈ψout(t)| + (1− P(t))|0〉〈0|, (15)

with

|ψout(t)〉 = 1√
P(t)

(cos
θ

2
|0〉 + eiφ sin

θ

2
fN (t)|1〉), (16)

where P(t) = cos2 θ
2 + sin2 θ

2 | fN (t)|2 and fN (t) = 〈N| exp {−iHt}|1〉. Note that
fN (t) is just the transition amplitude of an excitation (the |1〉 state) from the first to
the N th site of a graph of N spins.

Now suppose it is decided that Bob will pick up the N th spin (and hence complete
the communication protocol) at a predetermined time t = t0. The fidelity of quantum
communication through the channel averaged over all pure input states |ψin〉 in the
Bloch-sphere ((1/4π )

∫ 〈ψin|ρout(t0)|ψin〉dΩ) is then

F = | fN (t0)| cos γ

3
+ | fN (t0)|2

6
+ 1

2
, (17)

where γ = arg{ fN (t0)}. To maximize the above average fidelity, we must choose
the magnetic fields Bi such that γ is a multiple of 2π . Assuming this special choice
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of magnetic field value (which can always be made for any given t0) to be a part of
our protocol, we can simply replace fN (t0) by | fN (t0)| in (16).

4.3 Performance of the Protocol

We now want to examine the performance of the spin chain described in the last
subsection, namely the nearest-neighbor isotropic Heisenberg Hamiltonian H, as a
quantum channel. The eigenstates relevant to our problem are

|m̃〉L = am

N∑
j=1

cos{ π

2N
(m − 1)(2 j − 1)}|j〉, (18)

where m = 1, 2, . . . , N , a1 = 1/
√

N and am �=1 =
√

2/N with energy (on setting
E0 = 0) given by Em = 2B + 2J (1− cos{ πN (m − 1)}). In this case, fN (t0) is given
by

fN (t0) =
N∑

m=1

〈N|m̃〉〈m̃|1〉e−iEm t0 = C(vm), (19)

where vm = am cos { π
2N (m − 1)(2N − 1)}e−iEm t0 and

C(vm) =
N∑

m=1

amvm cos { π

2N
(m − 1)} (20)

is the first element of the inverse discrete cosine transform of the vector {vm,r }.
We now want to study the performance of our protocol for various chain lengths

N (Alice and Bob at opposite ends of the chain as shown in Fig. 3). In general, Bob
has to wait for different lengths of time t0 for different chain lengths N , in order to
obtain a high fidelity of quantum state transfer.

Using (17) and (19), we can numerically evaluate the maximum of | fN (t0)| for
various chain lengths from N = 2 to N = 80 when Bob is allowed to choose t0
within a finite (but long) time interval of length Tmax = 4000/J . This evaluation
is fast because (19) allows us to use numerical packages for the discrete cosine
transform. Taking a finite Tmax is physically reasonable, as Bob cannot afford to
wait indefinitely. It is to be understood that within [0, Tmax], the time t0 at which
optimal quantum communication occurs varies with N . The maximum fidelities as
a function of N and the maximum amounts of entanglement shareable (both rounded
to 3 decimal places) are shown in Fig. 5.

Figure 5 shows various interesting features of our protocol. The plot also shows
that in addition to the trivial case of N = 2, N = 4 gives perfect (F =
1.000) quantum state transfer to 3 decimal places and N = 8 gives near perfect
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Fig. 5 The bar plot shows the maximum fidelity F of quantum communication and the curve
shows the maximum sharable entanglement E achieved in a time interval [0, 4000/J ] as a function
of the chain length N from 2 to 80. The time t0 at which this maxima is achieved varies with N .
The straight line at F = 2/3 shows the highest fidelity for classical transmission of a quantum
state

(F = 0.994). The fidelity also exceeds 0.9 for N = 7, 10, 11, 13 and 14. Till N =
21 we observe that the fidelities are lower when N is divisible by 3 in comparison to
the fidelities for N+1 and N+2. While we do not have a clear cut explanation of this
effect, it is obviously a link between number theory and constructive interference in
a line. The plot also shows that a chain of N as high as 80 exceeds the highest fidelity
for classical transmission of the state, i.e., 2/3 in the time interval probed by us.

4.4 Transmission of Entanglement

As seen above, the simplest protocol with the simplest chain does not enable one
to do a quantum communication with unit fidelity for reasonable lengths. However,
this is precisely what is required for linking distinct quantum registers, which is our
ultimate aim! If we want to stick to such a simple scheme, whether it be motivated
by the ease of experimentation or otherwise, we thus have to transmit entanglement
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instead. Of course, even the transmission of this entanglement will not be perfect
(in fact, “how much” entanglement our channel can transmit will be the subject
of the current subsection). After several transmissions of an imperfectly entangled
state, one can perform entanglement distillation [25]—a scheme that uses only local
operations and classical communication on a set of partially entangled pairs of par-
ticles to obtain a smaller set of nearly maximally entangled pairs of particles (i.e.,
in a state |ψ+〉, for example). This maximally entangled pair of particles can sub-
sequently be used for perfect quantum communications using teleportation. With
this motivation, we will now examine how entanglement can be transmitted through
such a chain.

We will look at the transmission of the state of one member of a pair of parti-
cles in the entangled state |ψ+〉 through the spin chain channel. This is the usual
procedure for sharing entanglement between separated parties through any channel.
Alice prepares two qubits in the state |ψ+〉, holds one of them (say, A) in her hand
and places the other on site 1 of the chain. After waiting for an optimal time t0, Bob
picks up the qubit N from the chain. The joint state shared by Alice’s qubit A and
Bob’s qubit N at this time is given by

ρ1N (t0) = 1

2
{(1− | fN (t0)|2)|00〉〈00|1N

+ (|10〉 + | fN (t0)||01〉)(〈10| + | fN (t0)|〈01|)1N }.

The entanglement E of the above state, as quantified by its concurrence [5], is given
by

E = | fN (t0)|. (21)

Thus, for any non-zero fN (t0) (however small), some entanglement can be shared
through the channel. This entanglement, being that of a 2×2 system, can also always
be subject to entanglement distillation [26]. Thus several copies of the entangled
state ρ1N (t0) are to be shared in parallel between Alice and Bob and then it is
converted to a smaller collection of pure maximally entangled states |ψ+〉 shared
between Alice and Bob (only through local actions by Alice and Bob and classical
communication between them).

5 Lecture 4

In this lecture, we will describe the various methods that have been suggested to
perfect communication schemes using spin chains. For connecting two solid state
quantum registers, which was our main motivation, it is only perfect or nearly per-
fect state transfer which is relevant. The case where one transmits the state of one
member of a pair of entangled qubits through the channel can be made useful when
appended with entanglement distillation procedures. Basically, one has to first use
the spin chain channel repeatedly to make Alice and Bob share several copies of
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the partially entangled state ρ1N (t0). Then entanglement distillation is performed to
obtain a smaller number of pairs of particles in the state |ψ+〉 shared between Alice
and Bob. The particles in the state |ψ+〉 can now be used to transmit a state perfectly,
do quantum gates between qubits in well-separated locations, and so forth. Clearly,
it would be better if we could do perfect quantum state transfer through a spin chain
without invoking an additional entanglement distillation process. With this view in
mind, several schemes have been proposed such as the following ones.

5.1 Engineering the Couplings in a Chain

The couplings Ji j can be carefully chosen (even when there are only nearest-
neighbor couplings, i.e., i = j±1) to obtain a spin chain which accomplishes perfect
quantum state transfer [27]. If the couplings are mirror symmetric about the center of
the spin chain (i.e., J j, j+1 = JN− j,N− j+1), then the alternate eigenstates in the single
excitation sector (i.e., in a sector when there is only one spin flip in a fully polarized
background) have opposite parity (much like a particle in a box of elementary quan-
tum mechanics). More precisely, the energy eigenstates |φk〉 of the spin chain in the
first excitation sector with k = 0, 1, . . . , N − 1 satisfy 〈N− j|φk〉 = (−1)k〈j|φk〉.
Additionally, the couplings are so chosen that the spectrum of the Hamiltonian is
commensurate (the energies are proportional to integers), for example lets assume
that Ek ∝ k2. Then, due to time evolution of any state |ψ(t = 0)〉 = ∑k ck |φk〉 of
the chain for a special time t = τ such that Ekτ = k2π we have

〈j|ψ(t = τ )〉 =
∑

k

ck(−1)k〈j|φk〉 = 〈N− j|ψ(t = 0)〉. (22)

Thus there is a time τ in which the complete state in the first excitation sector mirror
inverts about the center of the chain. Naturally, a state |1〉 of the chain will evolve
to |N〉, which implies perfect state transfer. Before ending we add (and this is some-
thing that will be used in Lecture 5) that in Ref.[28] it has been shown that the mirror
inversion works for any excitation sector of the spin chain (i.e., any number of ones
and zeros in the chain).

5.2 Encoding in Many-Spin States (Wave-Packets)

It has been suggested [29] that one can use “truncated” Gaussian wave-packet states

|G( j0, k0)〉 =
∑

j

e−( j− j0)2/L2
e−ik0 j |j〉

centered at the site j = j0 (and defined over L sites around the site j0) and with
velocity∝ k0 to encode the logical |1〉 state of the qubit to be transmitted. In a block
of L spins near a site jA, Alice encodes the |1〉 state of the qubit she wants to transmit
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on |G( jA, k0)〉 (the |0〉 is encoded as in the previous protocols). For appropriate
choice of k0 (see Ref.[29]) one can choose L ∼ N 1/3, so that this wave-packet
travels with a dispersion which is negligible and remains constant no matter how far
it travels down the chain (strictly speaking, in Ref.[29], a ring of spins was used,
but Ref.[30] has also modified this scheme so that it is applicable to other graphs
such as an open-ended chain). Bob located at any distant site along the chain/ring
can catch almost the entire wave-packet by using a sufficiently long block of spins
(∼ N 1/3) to receive the state.

5.3 Coupling Qubits Weakly to a Quantum Many-Body System

Another approach is to couple the sending and receiving qubits weakly to a quantum
many-body system [31–33]. Say the many-body system is an arbitrary graph of
spins which interact with each other with a coupling strength J ∼ 1, while the
sending and receiving qubits are coupled to the system through a coupling ε where
ε ! 1. Moreover, assume all the couplings to be of XY or Heisenberg type (other
interactions would also do as long as they can enable the transfer of an excitation
through the graph from the sending to the receiving qubit). Then, one can derive
effective XY or Heisenberg Hamiltonians between the two qubits when there are
no eigenstates of the many-body system whose energy is close to 0 [31, 33]. This
is possible, for example, when the many-body system is in its ground state and
has a finite energy gap Δ between the ground and the first excited state (such as a
spin ladder [31]). Effectively, a Hamiltonian of the form ε2HXY

sr or ε2Hsr acts on
them, where s and r stand for the sending and the receiving qubits, respectively.
The other case is when the many-body system has exactly one available state |λ〉
of zero energy of the type in which a single spin is flipped from the ground state,
and beyond that, there is a gap Δ to all other states of the single flip type. Then a
“resonant” transfer [33] through the many-body system takes place with an effective
Hamiltonian εHXY

sM + εHXY
Mr , where σ x

M , σ
y
M and σ z

M are defined for a delocalized
qubit with σ z

M = +1 corresponding to the many-body system being in |λ〉 and
σ z

M = −1 corresponding to the many-body system being in its ground state [32, 33].
This resonant effective Hamiltonian is just a three qubit XY spin chain which can
perfectly transfer states in a timescale t ∼ 1/ε [27].

5.4 Ising Chain with Global Pulses

Another approach is to use a spin chain Hamiltonian with a different type of cou-
pling, namely a nearest neighbor Ising coupling, as given by

HIsing =
N∑

j=1

Jσ z
j σ

z
j+1, (23)
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in conjunction with “global” pulses (pulses that act on each spin of the chain in
exactly the same way) at regular intervals to perfectly transport a state from one of
its ends to the other [34]. To understand this, we will need two unitary operations,
one called the Hadamard (denoted by H ) which acts on a single qubit to change
|0〉 to |+〉 = |0〉 + |1〉 and |1〉 to |−〉 = |0〉 − |1〉 and the other the C Z operation
discussed in Lecture 1. It is shown in Ref.[34] that an Ising chain evolving on its
own for a time π/4J followed by fast (instantaneous) operations on the chain by
global pulses at time π/4J (and some extra operations, also fast, at the very ends of
the spin chain) accomplishes the operation S which is equivalent to a C Z between
all adjacent pairs of spins followed by an H on each spin. The entire time evolution
with interruptions by the instantaneous pulses at regular intervals is then equivalent
to a series of applications of S. Now imagine a N = 4 spin chain to be initialized
in the state (α|0〉1 + β|1〉1)|+〉2|0〉3|+〉4. Then the reader can easily verify that the
successive applications of S operations accomplishes the evolution

S⊗4(α|0〉1 + β|1〉1)|+〉2|0〉3|+〉4 = |0〉1|+〉2|0〉3(α|+〉4 + β|−〉4).

Thus an extra H operation on each qubit (accomplishable by global pulses) after the
above evolution has completely transferred the state at site 1 to site 4. The authors of
Ref.[34] show that in general, for a N spin chain, one is able to transfer a quantum
state from one end to the other by N applications of S (i.e., evolution of the chain
till time Nπ/4J interrupted by instantaneous pulses at regular intervals) and a H on
each qubit at the end of the evolution. Moreover, they also show that such a transfer
can be accomplished by any starting state of the spin chain and that not only does
the above protocol accomplish state transfer but also a mirror inversion of the state
of the chain about its center.

5.5 Adiabatic Passage

Some very recent works show that if some degree of slow modulation of the cou-
plings are allowed, then adiabatic passage can also be used to transfer quantum
states perfectly through a spin chain channel [35, 36].

5.6 Dual-Rail Encoding and Heralded Perfect Transfer

In this protocol one uses two spin chains in parallel as opposed to a single chain [37].
The couplings in the spin chains need not be either uniform or specially engineered
and could even be mildly random [38] (with the reasonable assumptions that the
chains are similar to each other and permit state transfer). A switchable two-qubit
interaction at the ends of the parallel chains suffices for the encoding and decoding
of this scheme. It accomplishes a “heralded” perfect quantum state transmission,
where conditional on a positive outcome of a measurement (which happens with a
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certain probability), Bob can conclude that he has accurately (i.e., with unit fidelity)
received the state transmitted to him. In other words, what was an imperfect fidelity
earlier has now been converted to a probability of success.

The idea [37] is to use two spin chains I and I I in parallel as a single com-
munication channel as shown in Fig. 6. As in previous protocols, this protocol is
also restricted to a sector in which each spin chain has at most one spin flipped in a
background of spins in the |0〉 state. We will thus use a similar notation as before for
spin chain states, namely |0〉(I ) and |0〉(I I ) denoting the ferromagnetic ground states
(all spins in the |0〉 state) of the chains I and I I , respectively, and |j〉(I ) and |j〉(I I )

denoting the j th spin flipped to the |1〉 state in the chains I and I I , respectively. For
the moment, we assume the chains to be non-interacting, identical copies of each
other and coupled by uniform Heisenberg or XY interactions. The first spin of each
chain is controlled by Alice, while the N th spin of each chain is controlled by Bob.
Initially, the spin chains are assumed to be in the states |0〉(I ) and |0〉(I I ). When Alice
intends to transmit a qubit state |φ〉 = α|0〉 + β|1〉, she encodes this into the two
spins that she controls as |φ̃〉 = α|01〉 + β|10〉. This encoding can be accomplished
by a simple two-qubit quantum gate [37] involving the qubits that Alice controls and
can be accomplished inside the quantum computer. This encoding places the entire
system of two spin chains in the quantum state

|Φ(0)〉 = α|0〉(I )|1〉(I I ) + β|1〉(I )|0〉(I I ), (24)

which evolves with time as

|Φ(t)〉 =
N∑

j=1

f1 j (t)(α|0〉(I )|j〉(I I ) + β|j〉(I )|0〉(I I )). (25)

The time varying density operator �(t) of the two spins which Bob controls is found
to be

�(t) = (1− | f1N (t)|2)|00〉〈00| + | f1N (t)|2|φ̃〉〈φ̃|. (26)

Bob now measures the “total” spin component of his spins in the z direction without
measuring any of the spins individually. Such a measurement gives a value −1 for
|00〉 and the value 0 for any superposition of |01〉 and |10〉. When Bob obtains the
outcome 0, which happens with probability | f1N (t)|2, his spins are projected to the
state |φ̃〉. Bob can now simply apply the inverse of the quantum gate that Alice
used for encoding to his spins to obtain a decoded state |φ〉, which corresponds to
his perfect retrieval of the state transmitted by Alice. For long Heisenberg and XY
chains, thus, Bob’s success probability in this heralded scheme scales as | f1N (t)|2 ∼
1/N 2/3 in a time t ∼ O(N/J ). Interestingly, if one was willing to wait till a time
O(N 1.67/J ) (a polynomial scaling with N ), then the protocol could be modified
(essentially to one in which Bob simply repeats his measurement again and again
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Fig. 6 The dual-rail protocol for perfect quantum communications through spin chain channels.
The upper part of the figure shows an arbitrary superposition of the logical qubit states being
encoded at one end of the parallel chains (the dotted box shows the encoded states of a qubit). The
lower parts of the figure show two possible states of the chain after the passage of some time and
Bob’s measurement. Bob’s success corresponds to the state being received perfectly on the spins at
his end of the chain. His failure corresponds to the information being retained in parts of the chain
not accessed by Bob, as shown in the lower left hand side of the figure. Strictly speaking the state
corresponding to failure will be a superposition of all states of the form shown in the lower left
hand side, i.e., it will be a superposition of all those states in which the dotted box is at sites other
than N .

on successive failures without resetting the chain) so as to obtain the state with a
probability of success arbitrarily close to unity [37].

It is worth noting that it is possible to use a single chain of higher dimensional
quantum systems, such as qutrits (quantum three level systems) with levels |+1〉, |0〉
and | − 1〉, instead of two parallel chains [37]. For our protocol, the qutrits should
be coupled by the natural generalization of an exchange (or isotropic Heisenberg)
interaction to higher dimensions given by a Hamiltonian H =∑i Pi,i+1 where

Pi, j |ψ〉i |φ〉 j = |φ〉i |ψ〉 j . (27)

From this state, one generates the states |+j〉 and |−j〉 of the chain in which the j th
qutrit is flipped to the |+1〉 and |−1〉 states respectively. Then the dual-rail protocol
described in the previous section can be exactly adapted to the chain of qutrits with
the mappings |0〉(I )|0〉(I I ) → |0〉,|0〉(I )|j〉(I I ) → |+j〉 and |j〉(I )|0〉(I I ) → |−j〉. One
can check that Bob’s measurement will now be mapped to a measurement which
finds out whether his qutrit is in the state |0〉 or not (without ascertaining whether
the qutrit is in the state |+1〉 or |−1〉) and success is when he obtains the result “not
|0〉.” In a similar manner, if one had exchange coupled d+1 level systems, one could
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use one of those levels as the |0〉 state, and use the others to transmit a d-dimensional
system perfectly with 0.99 probability of success in a time ∼ O(N 1.67/J ) through
the chain.

5.7 Controllable Coupling of a Memory Qubit at Bob’s End

Suppose Bob possessed a memory qubit which could be controllably coupled to the
spin at his end of the chain. Then he can receive a single qubit transmitted by Alice
with near perfect fidelity in a timescale of the order ∼ O(N 1.67/J ) [39]. Bob lets
this memory qubit interact with the spin at his end of the chain at regular intervals,
but for different durations of time during each interaction. These time durations are
so chosen that the entire amplitude of Bob’s spin to be in the |1〉 state is transferred
to the memory qubit. In this way, the chain will finally be left in the state |0〉 (all
information erased), and the memory qubit will end up in the state α|0〉 + β|1〉.
One positive feature of this scheme is that the memory qubit may itself be a part
of the spin chain, say an extra N + 1th spin attached to the N th spin of the chain,
with its interaction with the chain being switchable through a local magnetic field
[39]. This scheme is essentially a simplification of an earlier scheme where a larger
(multi-qubit) memory is required to be held by Bob [40].

The above are by no means exhaustive descriptions of possible schemes of using
spin chains as perfect channels for communicating quantum information. However,
before closing this lecture, I would like to point to the reader that this is not the
only interesting facet of studying information transfer by spin chains or by quantum
many-body systems in general. Another interesting aspect, and perhaps more so, is
to study how different condensed matter systems respond to the input of quantum
information and indeed how well they transfer it. The quality and mode of transfer
of quantum information through the system is then just another property of such a
system in the same manner as its susceptibility and other response functions are.
In some sense, this area of study can be classified as one where one studies the
“quantum response” (the state as a function of time) to the “quantum stimulus”
(placement of a quantum state at some point on a spin chain). In this context, transfer
through antiferromagnets [41–43] and chains of higher dimensional spins [41, 44]
have both been studied. In the next lecture we proceed to describe the use of spin
chains for quantum computation.

6 Lecture 5

In this lecture we approach the ultimate aim, namely to investigate the possibility of
quantum computation using many-body systems. There are quite a few celebrated
approaches to this aim which I will not cover in this review. One such approach sug-
gests the use of two-dimensional condensed matter systems with anyonic excitations
for fault tolerant quantum computation [45–47]. Another approach suggests using
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measurements on certain highly entangled states of many-body systems (could be
a state prepared dynamically) [48–51] to perform quantum computation—this is, in
fact, a completely different approach to quantum computation called measurement-
based quantum computation. The reader interested in these topics should refer the
above references. Instead, I will focus on using a given many-body system, such as
a one-dimensional magnet, for quantum computation with its spins (or collections
of its spins) as qubits and performing sequences of logic gates on these qubits to
accomplish quantum computation.

6.1 Quantum Computation with a One-Dimensional
Heisenberg Chain

There are two main problems when one wants to use a many-body system as a quan-
tum computer. First, its interactions are generally not tunable—constant in time,
and if we want to use its individual spins as qubits, their states will be continuously
affected by the interactions with their neighbors. If you have read the earlier lectures,
you know that a single qubit placed at one end of certain classes of spin chains, for
example, does not stay there, but drifts to the other end—in fact, this could even be
used for communications! Clearly thus it is difficult to have isolated qubits on which
local unitaries can be performed, or isolated pairs of qubits on which two-qubit gates
can be performed. Secondly, it may be difficult to distinctly address a single qubit or
even a few qubits—in the ultimate limit only a global addressing of the whole chain
may be possible. In Ref.[52] a method of avoiding both the problems was suggested
for an uniformly coupled nearest-neighbor isotropic Heisenberg chain of N spins
given by

H =
N∑

i=1

J σ i · σ i+1 −
N∑

i=1

Biσ
i
z

in a magnetic field which can potentially vary from spin to spin (is Bi for the i th spin
and for simplicity we have assumed an open-ended chain, though this is not compul-
sory). The above model is the particular context in which we will now discuss how to
use a quantum many-body system as a quantum computer. To keep matters simple,
we will not touch upon the second problem with many-body systems, namely, the
fact that individual spins, being closely packed, may not be separately addressable
(though this can also be circumvented, as the reader may check in Ref.[52]).

Suppose we want to use the individual spins of this system as qubits. Then we
will need to show you how to keep such qubits isolated from each other when only
single-qubit gates (or no gates) are being performed on them. Additionally we need
to show how only a pair of them can be made to talk to each other when we want a
two-qubit gate between them, while the pair is kept isolated from the rest. We will
additionally assume the ability to apply fields (more specifically, magnetic fields, as
we are dealing with spins) to an individual spin. We first discuss how to initialize
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such a spin chain as a quantum computer. This involves both an initialization of
the Hamiltonian to a desired form, where the isolation mentioned above becomes
possible, as well as an initialization of the state of the chain in a certain form for
the required isolation. To initialize the Hamiltonian to a desired form, we first apply
a magnetic field with Bi having a value Bodd for i = 1, 3, 5, . . . , (odd numbered
spins) and Beven for i = 2, 4, 6, . . . (even numbered spins). If |Bodd − Beven| is
large compared to J , then, due to mismatching of the Zeeman energies of nearest-
neighbor spins, the Hamiltonian undergoes the following Heisenberg to Ising trans-
formation (for a proof see [53]):

N∑
i=1

J σ i · σ i+1 −
N∑

i=odd

Boddσ
i
z −

N∑
i=even

Bevenσ
i
z →

N∑
i=1

J σ i
z σ

i+1
z . (28)

Next is the initialization of the spin chain to an ordered state, which is the state at the
very start of any computation. This is readily done for J both positive and negative
for the above Ising chain, by simply cooling the system to its ground state, where it
either goes to the antiferromagnetic Neel state in which alternate spins face opposite
to each other or the all-aligned ferromagnetic state. In both these cases, we identify
alternate spins as qubits (labeled by X,Y, Z , etc. in the Fig. 7) and barrier spins
(labeled as B in Fig. 7). This initialized state is shown in Fig. 7(a) for the case of
a ferromagnet. Thus all the barrier spins will be aligned to each other at the start.
Without the loss of generality, one can assume any one of Bodd or Beven to be 2J and
suppose that this magnetic field 2J is the one on the location of the qubits X,Y, Z ,

Fig. 7 The figure shows one way of using the spins of a Heisenberg spin chain as qubits for
quantum computation. Part (a) shows the arrangement of qubits labeled X, Y, Z , etc. and barrier
spins B between them. Part (b) shows the mechanism of performing single-qubit gates by local
fields on the qubits. Part (c) shows how one can make a two-qubit gate between qubits Y and Z by
tuning the field on the barrier spin between them
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etc. In the initialized state, thus, each qubit faces an effective constant magnetic
field −2J from its neighboring barrier spins due to the Ising interaction (taking
the down direction to correspond to σz = −1), which is exactly canceled by the
magnetic field 2J on it. Each qubit is thus completely isolated from the effects of
its neighbors. Figure 7(b) shows the situation when single-qubit gates are being per-
formed on the qubits. This can simply be done by applying arbitrary local magnetic
fields on the qubits X,Y, Z , etc. (these fields have to be “in addition” to the constant
magnetic field of 2J which plays a central role in the isolation of the qubit from its
neighbors).

Having demonstrated the possibility of arbitrary single-qubit gates, we must now
demonstrate that entangling two-qubit gates should be possible between any two
qubits of the chain in order to prove the feasibility of universal quantum computa-
tion with our system. For this, we only require to show that two-qubit entangling
gates are possible between neighboring qubits. This is because once an entangling
two-qubit gate between neighboring qubits is possible, it can, with additional local
operations on the qubits, be used to swap the states of the qubits. Thus states of
qubits far from each other, such as qubits X and W of Fig. 7 can be brought to
neighboring positions Y and Z by repeated swaps for a required two-qubit gate and
taken back to their original positions after the gate operation through another series
of swaps. Figure 7(c) shows how a two-qubit entangling gate can be accomplished
on the neighboring qubits Y and Z . The magnetic field on the barrier spin between
Y and Z is suddenly tuned to the value J . Then the three spin segment Y , Z and
the barrier between them become equivalent to a three spin open-ended Heisenberg
chain in a constant magnetic field J . Evolving such a system for J = 1, we get
that at time tg = π/3 (let us call it “gate time”), the following gate occurs between
qubits Y and Z (we leave it to the reader to explicitly verify this by evolving a three
spin finite Heisenberg chain):

⎛
⎜⎜⎝

eitg 0 0 0
0 −eitg/2 eitg/2− 1 0
0 eitg/2− 1 −eitg/2 0
0 0 0 e−itg

⎞
⎟⎟⎠ .

To be more specific, at the gate time tg , the barrier spin between qubits Y and Z
returns to its original pure state, i.e., decoupled from the state of Y and Z so that it
is possible to ascribe a unitary evolution Ug that connects the initial states of qubits
Y and Z to their state at tg . Note that indeed this is an entangling gate because if
the qubits Y and Z started in the state |01〉, they would evolve to the entangled state
−eitg/2|01〉 + (eitg/2− 1)|10〉.

The above description is a method for accomplishing quantum computation in a
one-dimensional spin chain according to a proposal of Simon Benjamin and myself
a few years ago [52, 53]. In those papers, the reader will also find how the same
protocol can be adapted to a setting where all the qubits of the chain are only
globally accessible (a genuine possibility for a many-body system). Benjamin has
subsequently demonstrated that a two-dimensional generalization of the protocol
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is also possible [54], which can make quantum error correction feasible for such
computers. Crucially in the protocol described above, we needed only one barrier
spin to separate the qubits as our interactions were only nearest neighbor. Similar
protocols have now been shown to be possible for longer range interactions as well
[55]. Additionally, the possibility of a similar scheme, even when the couplings of
the chain are random, have also been demonstrated [56].

6.2 Logic Gates Through Engineered XY Spin Chains

We now ask the question that whether it is possible for a quantum gate to occur
between widely separated qubits such as the qubits at the opposite ends of a spin
chain. Indeed such a thing has been shown to be possible [57], but only for the engi-
neered XY spin chains discussed in Lecture 4. These spin chains, as was discussed,
mirror invert their states due to their natural time evolution. To give an example, a
state |000000〉 and |100001〉 of a six spin chain will remain unchanged, while the
states |100000〉 and |000001〉 will interchange. However, we want much more than
simply mirror inversion — we want a quantum gate between the qubits 1 and 6.

For this purpose, let us delve into an important feature of the XY model, namely,
that it is equivalent to a model of free fermions hopping in a lattice. These fermions,
called Jordan–Wigner fermions [12], are described by operators c†k which create a
ferm-ion in the kth site of the lattice. They can be written in terms of the raising oper-
ator σ k

+ = σ k
x +iσ k

y of the kth spin and a string of σ j
z operators with j = 1, . . . , k−1,

but their specific form, to be found in several condensed matter textbooks [12], need
not concern us here. We only need to note that raising a spin from the |0〉 to |1〉 at the
kth site is equivalent (apart from some phase factors) to the action of the operator c†k
on the initial state, i.e., equivalent to the creation of a fermion at the kth site. Thus
the states of the six spin chain in the above paragraph can be interpreted as the zero
fermion (or vacuum) state |000000〉, one fermion states |100000〉 ≡ c†1|000000〉
and |000001〉 ≡ c†6|000000〉, and the two fermion state |100001〉 = c†1c†6|000000〉.
Now the engineered spin chain discussed in Lecture 4, which accomplishes mirror
inversion, will map c†1c†6|000000〉 back to itself after the period of inversion except
for a sign change due to the exchange of the two fermions. In other words, the
state |100001〉 will evolve to −|100001〉 in a certain time T due to the exchange of
fermions in a two fermion state. The zero and one fermion states, on the other hand,
will have no such sign change, but the pair of one fermion states will transform to
each other. The gate acting on the qubits 1 and 6 is then

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞
⎟⎟⎠ ,

which is an entangling gate, which when appended with local operations on these
qubits enables any quantum gate on them. More recent work has shown that such
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engineered chains even enable multi-qubit gates involving all the qubits of the chain
[58], in particular a multi-qubit gate relevant to the quantum Fourier transform.
Before ending the section on quantum computation using spin chain systems, I
would like to point out that for Ising spin chains, global pulses could be used for
universal quantum computation [34]. Moreover, spin systems with certain couplings
can accomplish automata such as those for single-spin measurement [59].

To summarize, through the above set of lectures, I have tried to present an
overview of the use of spin chains for quantum information applications. The work
in the field is much more than I have been able to cover in these lectures and the
lectures have mostly been based on the work with which I have personally been
involved. However, I hope that the reader will have obtained a flavor of the activities
in this rapidly growing field and will be inspired to contribute to it.
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Non-Markovian Quantum Dynamics
and the Method of Correlated Projection
Super-Operators

Heinz-Peter Breuer

1 Introduction

Relaxation and decoherence processes are key features of the dynamics of open
quantum systems [1]. In the standard approach one tries to develop appropriate
master equations for the open system’s reduced density matrix ρS which is given by
the partial trace taken over the environmental variables coupled to the open system.
Invoking the weak-coupling assumption one can formulate in many cases of phys-
ical interest a Markovian quantum master equation for the reduced density matrix,
expressing the dynamical laws for the irreversible motion of the open system.

However, the theoretical description of quantum mechanical relaxation and deco-
herence processes often leads to a non-Markovian dynamics which is determined by
pronounced memory effects. Strong system–environment couplings [2, 3], correla-
tions and entanglement in the initial state [4, 5], interactions with environments
at low temperatures and with spin baths [6], finite reservoirs [7, 8], and transport
processes in nano-structures [9] can lead to long memory times and to a failure of
the Markovian approximation.

Here, we will review the most important features of a systematic approach to
non-Markovian quantum dynamics which is known as projection operator
technique [10–13]. This technique is based on the introduction of a certain projec-
tion super-operator P which acts on the states of the total system. The super-operator
P expresses in a formal mathematical way the idea of the elimination of degrees of
freedom from the complete description of the states of the total system. Namely, if ρ
is the full density matrix of the composite system, the projection Pρ serves to rep-
resent a certain approximation of ρ which leads to a simplified effective description
of the dynamics through a reduced set of relevant variables.

With the help of the projection operator techniques one derives closed dynamic
equations for the relevant variables Pρ. We will discuss two different approximation
schemes. The first one is based on the Nakajima–Zwanzig equation [10, 11] which
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represents an integro-differential equation for Pρ with a certain memory kernel.
The second scheme employs a time-convolutionless master equation for Pρ, i.e.,
a time-local differential equation with a time-dependent generator [14–19]. These
equations are used as starting point for the derivation of effective master equa-
tions through a systematic perturbation expansion. In the standard approach to the
dynamics of open systems one chooses a projection super-operator which is defined
by the expression Pρ = ρS ⊗ ρ0, where ρ0 is some fixed environmental state. A
super-operator of this form projects the total state ρ onto a tensor product state, i.e.,
onto a state without any statistical correlations between system and environment.
Many examples for this product-state projection are known in the fields of quantum
optics, decoherence, quantum Brownian motion, quantum measurement theory, and
coherent and optimal quantum control. It is typically applicable in the case of weak
system–environment couplings. The corresponding perturbation expansion is usu-
ally restricted to the second order (known as Born approximation), from which one
derives, with the help of certain further assumptions, a Markovian quantum master
equations in Lindblad form [20–22].

A possible approach to large deviations from Markovian behavior consists in
carrying out the perturbation expansion to higher orders in the system–environment
coupling. However, this approach is often limited by the increasing complexity of
the resulting equations of motion. Moreover, the perturbation expansion may not
converge uniformly in time, such that higher orders only improve the quality of the
approximation of the short-time behavior, but completely fail in the long-time limit
[23].

We will discuss here a further strategy for the treatment of highly non-Markovian
processes which is based on the use of a correlated projection super-operator
[24–29]. By contrast to the product-state projection, a correlated projection
super-operator projects the total state ρ onto a system–environment state that con-
tains statistical correlations between certain system and environment states. We will
discuss a representation theorem for a large class of such projections, which are
appropriate for the application of the projection operator techniques, and develop a
corresponding non-Markovian generalization of the Lindblad equation.

2 The Standard Projection Operator Method

We investigate an open quantum system S that is coupled to some environment E .
The corresponding Hilbert spaces are denoted by HS and HE , respectively. The state
space of the composite system is thus given by the tensor product space

H = HS ⊗HE . (1)

The states of the composite system are represented by density matrices ρ on H
satisfying the physical conditions of the positivity and the normalization:

ρ ≥ 0, trρ = 1, (2)
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where tr denotes the trace taken over the total state space H. The partial traces over
HS and HE will be denoted by trS and trE .

2.1 Nakajima–Zwanzig Projection Operator Technique

A central goal of the theory is to develop efficient strategies for the description of
the behavior of the reduced density matrix which is determined by the partial trace
over the environmental state space,

ρS = trEρ. (3)

The basic idea of the projection operator techniques is to regard the operation of
taking the partial trace over E formally as a map P defined by

Pρ = (trEρ)⊗ ρ0. (4)

For a fixed environmental state ρ0 this defines a linear transformation which maps
any density operator ρ on the total state space H to a density operator Pρ on H and
has the property of a projection operator:

P2 = P. (5)

Being a map acting on operators, P is often called a projection super-operator. The
complementary projection is defined by

Q = I − P, (6)

I being the identity map. Note that according to Eq. (4) the state of the reduced
system is obtained from the projection Pρ by taking the partial trace over the envi-
ronment:

ρS = trE {Pρ}. (7)

The Hamiltonian of the composite system is of the form

H = H0 + HI , (8)

where H0 denotes the unperturbed part, usually given by the sum of a system
Hamiltonian HS and an environmental Hamiltonian HE , and HI represents the inter-
action. In many cases it is convenient to formulate the dynamics in the interaction
picture with respect to H0 in which the density matrix ρ(t) of the total system is
governed by the von Neumann equation
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d

dt
ρ(t) = −i[HI (t), ρ(t)] ≡ L(t)ρ(t). (9)

The operator

HI (t) = eiH0t HI e−iH0t (10)

represents the Hamiltonian in the interaction picture and L(t) the corresponding
Liouville super-operator.

The Nakajima–Zwanzig (NZ) projection operator technique yields a closed equa-
tion of motion for the relevant part Pρ(t) of the density matrix and, hence, for
the reduced density matrix ρS(t). To simplify the presentation we assume that the
condition

PL(t1)L(t2) . . .L(t2n+1)P = 0 (11)

holds true. This condition is in fact satisfied in many applications. Moreover, we
suppose that the initial state satisfies Pρ(0) = ρ(0). The projection Pρ(t) is then
governed by a homogeneous integro-differential equation, the Nakajima–Zwanzig
equation:

d

dt
Pρ(t) =

∫ t

0
dt1K(t, t1)Pρ(t1). (12)

The memory kernel K(t, t1) is given by

K(t, t1) = PL(t) T exp

[∫ t

t1

dt2QL(t2)

]
QL(t1)P, (13)

where T denotes the chronological time ordering.
The memory kernel K(t, t1) is in general a very complicated super-operator

whose determination is in most cases as complicated as the solution of the dynamics
of the full system. Therefore, one usually tries to determine it by a perturbation
expansion in powers of the strength of the system–environment coupling. The lowest
order contribution is given by the second-order equation of motion:

d

dt
Pρ(t) =

∫ t

0
dt1PL(t)L(t1)Pρ(t1). (14)

Higher orders are obtained with the help of the general expression (13) for the mem-
ory kernel.
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2.2 Time-Convolutionless Projection Operator Technique

There exists an alternative expansion technique based on the projection super-
operator P which is known as time-convolutionless (TCL) projection operator
method. By contrast to the NZ approach, the TCL method leads to an equation
of motion for the relevant part of the density matrix which represents a time-local
differential equation of the general form

d

dt
Pρ(t) = K(t)Pρ(t). (15)

Here, K(t) is a time-dependent super-operator, called the TCL generator. It should
be stressed that the TCL equation (15) describes non-Markovian dynamics, although
it is local in time and does not involve an integration over the past of the system.
In fact, the TCL equation takes into account all memory effects through the explicit
time-dependence of the generator K(t).

To obtain the time-local form of the TCL equation one eliminates the dependence
of the future time evolution on the history of the system through the introduction of
the backward propagator into the Nakajima–Zwanzig equation. This enables one to
express the density matrix at previous times t1 < t in terms of the density matrix at
time t and to derive an exact time-local equation of motion. We remark that the back-
ward propagator and, hence, also the TCL generator may not exist, typically at iso-
lated points of the time axis. This may happen for very strong system–environment
couplings and/or long integration times; an example is discussed in [1].

Again, one can develop a systematic perturbation expansion for the TCL gener-
ator which takes the form K(t) = K2(t) + K4(t) + · · · . The various orders of this
expansion can be expressed through the ordered cumulants [30–33] of the Liouville
super-operator L(t). For instance, the contributions of second and fourth order to
the TCL generator are given by [1]

K2(t) =
∫ t

0
dt1PL(t)L(t1)P,

and

K4(t) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

×
[
PL(t)L(t1)L(t2)L(t3)P − PL(t)L(t1)PL(t2)L(t3)P

−PL(t)L(t2)PL(t1)L(t3)P − PL(t)L(t3)PL(t1)L(t2)P
]
.

In second order the TCL master equation takes the form

d

dt
Pρ(t) =

∫ t

0
dt1PL(t)L(t1)Pρ(t), (16)

which should be contrasted to the NZ equation (14).
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It is important to realize that the NZ and the TCL technique lead to equations of
motion with entirely different structures and that, therefore, also the mathematical
structure of their solutions are quite different in any given order [34]. It is difficult
to formulate general conditions that allow to decide for a given model whether the
NZ or the TCL approach is more efficient. The assessment of the quality of the
approximation obtained generally requires the investigation of higher orders of the
expansion, or else the comparison with numerical simulations or with certain limit-
ing cases that can be treated analytically. It turns out that in many cases the degree
of accuracy obtained by both methods are of the same order of magnitude. In these
cases the TCL approach is of course to be preferred because it is technically much
simpler to deal with.

In the NZ equation (12) as well as in the TCL equation (15) we made use of the
initial condition Pρ(0) = ρ(0). According to the definition (4) of the projection P
this condition is equivalent to the assumption that ρ(0) represents an uncorrelated
tensor product initial state, ρ(0) = ρS(0) ⊗ ρ0. For a correlated initial state one
has to add a certain inhomogeneity to the right-hand side of the NZ or the TCL
equation which involves the initial conditions through the complementary projec-
tion Qρ(0) = (I − P)ρ(0). A general method for the treatment of such correlated
initial states within the TCL technique is described in [1]; for a recent study on their
influence in weakly coupled systems see also Refs. [35, 36].

2.3 Markovian Limit and Quantum Dynamical Semigroups

With the standard projection defined in Eq. (4), the TCL equation (16) is equivalent
to the following master equation for the reduced density matrix,

d

dt
ρS(t) = −

∫ t

0
dt1trE {[HI (t), [HI (t1), ρS(t)⊗ ρ0]]}. (17)

This equation provides an appropriate starting point for an approximation scheme
which is known as Born–Markov approximation and which eventually leads to a
Markovian quantum master equation in Lindblad form:

d

dt
ρS(t) = KρS(t)

= −i [HS, ρS(t)]+
∑
λ

(
RλρS(t)R†

λ −
1

2

{
R†

λRλ, ρS(t)
})

. (18)

Here, K is a time-independent generator, the Lindblad generator, involving a
Hermitian operator HS and arbitrary system operators Rλ. Therefore, it generates
state transformations of the form

Φt : ρS(0) → ρS(t), Φt = eKt . (19)
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Φt is called a quantum dynamical map and the set of transformations

{Φt |t ≥ 0}

is referred to as quantum dynamical semigroup. Under certain technical conditions,
it can be shown that the form of the Lindblad generator guarantees the preservation
of the positivity and normalization of the density matrix, as well as the complete
positivity of the dynamical transformation Φt . Vice versa, any completely posi-
tive quantum dynamical semigroup has a generator of the form (18). This is the
well-known Gorini–Kossakowski–Sudarshan–Lindblad theorem [20, 21].

The microscopic derivation of the master equation (18) from the TCL equation
(17) requires the validity of several approximations, the most important one being
the so-called Markov approximation. This approximation presupposes a rapid decay
of the two-point correlation functions of those environmental operators that describe
the system–environment coupling. More precisely, if τE describes the temporal
width of these correlations and τR the relaxation time of the system, the Markov
approximation demands that

τE ! τR . (20)

This means that the environmental correlation time τE is short compared to the
relaxation time τR of the open system.

The Markov approximation is justified in many cases of physical interest. Exam-
ples of application are the quantum optical master equation describing the interac-
tion of radiation with matter and the master equation for a test particle in a quan-
tum gas [37–39]. However, strong couplings or interactions with low-temperature
reservoirs can lead to large correlations resulting in long memory times and in
a failure of the Markov approximation. In the following, the quantum dynam-
ics of an open system is said to be non-Markovian if the time-evolution of its
reduced density matrix cannot be described (to the desired degree of accuracy) by
means of a closed master equation with a (possibly time-dependent) generator in
Lindblad form.

If the two-point environmental correlation functions do not decay rapidly in time
the second order of the expansion cannot, in general, be expected to give an accurate
description of the dynamics. For instance, this situation arises for the spin star model
discussed in Ref. [23], where the second-order generator of the master equation
increases linearly with time such that the Born–Markov approximation simply does
not exist.

More importantly, the standard Markov condition (20) alone does not guarantee,
in general, that the Markovian master equation provides a reasonable description of
the dynamics. This situation can occur for finite and/or structured reservoirs that
cannot be represented by a Bosonic field or a collection of harmonic oscillator
modes. In such cases a detailed investigation of the influence of higher-order corre-
lations is indispensable in order to judge the quality of a given order. The model dis-
cussed in Ref. [25] represents an example for which the standard Markov condition
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is satisfied although the expansion based on the projection (4) completely fails if
one truncates the expansion at any finite order. In such cases strong non-Markovian
dynamics is induced through the behavior of higher-order correlation functions.

We conclude that in general one can judge the quality of a given projection
super-operator and a given expansion technique that is based on it only by an investi-
gation of the structure of higher orders. The standard projection and the correspond-
ing Lindblad equation are not reliable if higher orders lead to contributions that are
not bounded in time, signifying the non-uniform convergence of the perturbation
expansion [25].

3 Correlated Projection Super-Operators

The performance of the projection operator techniques depends of course on the
properties of the microscopic model under study, in particular on the structure of
the correlation functions of the model. However, it also depends strongly on the
choice of the super-operator P . Several extensions of the standard projection (4)
and modifications of the expansion technique have been proposed in the literature
(see, e.g., Refs. [40–42]).

The projection defined by (4) projects any state ρ onto a tensor product ρS ⊗
ρ0 that describes a state without statistical correlations between the system and its
environment. Here, we introduce a more general class of projection super–operators
that project onto correlated system–environment states and are therefore able to
describe strong correlations and non-Markovian effects [24].

3.1 General Conditions

We assume that our new class of maps P represent super-operators with the prop-
erty of a projection, i.e., P2 = P . As a consequence, the whole machinery of the
projection operator techniques described in Sect. 2 can be applied also to the new
class of correlated maps.

Within the projection operator techniques the projection Pρ should represent a
suitable approximation of ρ. We therefore require that for any physical state ρ the
projection Pρ is again a physical state, i.e., a positive operator with unit trace. This
means that P is a positive and trace-preserving map, namely

ρ ≥ 0 =⇒ Pρ ≥ 0, tr{Pρ} = trρ. (21)

Our class of projection operators is assumed to consist of maps of the following
general form:

P = IS ⊗Λ. (22)

Here, IS denotes the unit map acting on operators on HS , and Λ is a linear map that
transforms operators on HE into operators on HE . A projection super-operator of



Non-Markovian Quantum Dynamics 133

this form leaves the system S unchanged and acts nontrivially only on the variables
of the environment E . As a consequence of the positivity of P and of condition (22)
the map Λ must be NS-positive, where NS is the dimension of HS . In the following
we use the stronger condition that Λ is completely positive, because completely
positive maps allow for a simple mathematical characterization (see Sect. 3.2).

Let us discuss the physical implications of these conditions. According to (5) and
(22) the map Λ must itself be a projection, namely Λ2 = Λ. Moreover, since P is
trace-preserving, the map Λ must also be trace-preserving. Hence, we find that Λ
represents a completely positive and trace-preserving map (CPT map, or quantum
channel) which operates on the variables of the environment and has the property
of a projection. The action of P may also be interpreted as that of a generalized
quantum measurement which is carried out on the environment. A further physically
reasonable consequence of the positivity of Λ and of (22) is that P maps product
states to product states, and, more generally, separable (classically correlated) states
to separable states. This means that the application of P does not create entangle-
ment between the system and its environment.

Using (22) and the fact that Λ is trace-preserving we get

ρS ≡ trEρ = trE {Pρ}. (23)

This relation connects the density matrix of the reduced system with the projection
of a given state ρ of the total system. It states that, in order to determine ρS , we
do not really need the full density matrix ρ, but only its projection Pρ. Thus, Pρ

contains the full information needed to reconstruct the reduced system’s state.

3.2 Representation Theorem

What is the explicit structure of the projection super-operators satisfying the basic
conditions formulated above? This question is answered by a representation theorem
[24] which states that P fulfils the condition of Sect. 3.1 if and only if it can be
written in the form

Pρ =
∑

i

trE {Aiρ} ⊗ Bi , (24)

where {Ai } and {Bi } are two sets of linear independent Hermitian operators satisfy-
ing the relations

trE {Bi A j } = δi j , (25)∑
i

(trE Bi )Ai = IE , (26)

∑
i

AT
i ⊗ Bi ≥ 0. (27)
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Condition (25) guarantees that P is a projection super-operator, (26) ensures that
P is trace-preserving, and (27) is equivalent to the condition of complete positivity
(T denotes the transposition).

The standard projection (4) that projects onto an uncorrelated tensor product state
is obviously of the form of Eq. (24). In fact, if we take a single A = IE and a
single B = ρ0 the conditions (25), (26), and (27) are trivially satisfied and Eq. (24)
obviously reduces to Eq. (4). Of course, a projection Pρ of the form of Eq. (24)
does not in general represent a simple product state. We therefore call such P cor-
related projection super-operators. They project onto states that contain statistical
correlations between the system S and its environment E . In the following we will
consider the case that one can find a representation of the projection with positive
operators:

Ai ≥ 0, Bi ≥ 0. (28)

Equation (27) is then trivially satisfied. Without restriction we may assume that the
Bi are normalized to unit trace,

trE Bi = 1, (29)

such that condition (26) reduces to the simple form

∑
i

Ai = IE . (30)

Under these conditions P projects any state ρ onto a state which can be written as
a sum of tensor products of positive operators. In the theory of entanglement (see,
e.g., the recent review [43]) such states are called separable or classically correlated.
Using a projection super-operator of this form, one thus tries to approximate the
total system’s states by a classically correlated state. The general representation of
(24) includes the case of projection super-operators that project onto inseparable,
entangled quantum states. We will not pursue here this possibility further and restrict
ourselves to positive Ai and Bi in the following.

3.3 Correlated Initial States

As mentioned already in Sect. 2.2 a homogeneous NZ or TCL equation of motion
presupposes a tensor product initial state if one uses the standard projection super-
operator (4). However, this is no longer true for the correlated projection defined by
(24). In fact, the general condition for the absence of an inhomogeneous term in the
NZ equation (12) or the TCL equation (15) is given by

Pρ(0) = ρ(0). (31)
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According to (24) this condition is equivalent to the assumption that ρ(0) takes the
form

ρ(0) =
∑

i

ρi (0)⊗ Bi , (32)

where

ρi (0) = trE {Aiρ(0)} ≥ 0. (33)

The right-hand side of (32) represents in general a correlated initial state. Hence, a
great advantage of the correlated projection super-operators is given by the fact that
they allow the treatment of correlated initial states by means of a homogeneous NZ
or TCL equation [24].

3.4 Conservation Laws

A crucial step in applications of the correlated projection operator technique is the
construction of an appropriate projection super-operator P . An important strategy
for this construction is to take into account the known conserved quantities of the
model under study.

Suppose C is a conserved observable. A good choice for the projection
super-operator P will then be a projection that leaves invariant the expectation value
of C , i.e., that satisfies the relation

tr{Cρ} = tr{C(Pρ)}. (34)

To bring this relation into a more convenient form we introduce the adjoint P† of
the projection super-operator P . The adjoint map is defined with the help of the
Hilbert-Schmidt scalar product

(X,Y ) = tr{X †Y } (35)

for the space of operators acting on the state space of the total system through the
relation

(X,PY ) = (P†X,Y ).

This allows us to write Eq. (34) in the form tr{Cρ} = tr{(P†C)ρ}. Requiring this to
hold for all states ρ we get the relation

P†C = C. (36)

The adjoint of the projection (24) is obtained by interchanging the role of Ai and
Bi . Hence, condition (36) can be written explicitly as
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P†C =
∑

i

trE {Bi C} ⊗ Ai = C. (37)

This equation represents a condition for the projection super-operator P on the basis
of a known conserved quantity of the underlying model. It ensures that the projec-
tion super-operator leaves invariant this quantity and that the effective description
respects the corresponding conservation law.

4 Generalization of the Lindblad Equation

Once a projection super-operator has been chosen the projection Pρ(t) of the
time-dependent total system’s state ρ(t) is, according to (24), uniquely determined
by the dynamical variables

ρi (t) = trE {Aiρ(t)}. (38)

To be specific we assume in the following that the index i takes on the values i =
1, 2, . . . , n. Since we require that the Ai are positive, the ρi (t) are positive operators.
From Eq. (23) we find the connection to the reduced density matrix,

ρS(t) =
∑

i

ρi (t), (39)

and the normalization condition takes the form

trSρS(t) =
∑

i

trSρi (t) = 1. (40)

Hence, we see that the state of the reduced system is uniquely determined by a set
of n (unnormalized) density operators ρi (t).

Our formulation leads to a natural question, namely what is the analog of the
Lindblad equation (18) in the case of a correlated projection super-operator? To
answer this question we first observe that the time-evolution leads to a transforma-
tion of the form

{ρi (0)} → {ρi (t)}, (41)

transforming any initial set of positive operators ρi (0) ≥ 0 into another set of
positive operators ρi (t) ≥ 0 at time t > 0. This transformation can conveniently
be described with the help of an auxiliary n-dimensional Hilbert space Cn and a
fixed orthonormal basis {|i〉} for this space. Then we can identify the collection of
densities ρi (t) with a density matrix �(t) on the extended space

Hext = HS ⊗ Cn (42)
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through the relation

�(t) =
∑

i

ρi (t)⊗ |i〉〈i |. (43)

This density matrix can be regarded as a block diagonal matrix

�(t) =

⎛
⎜⎜⎜⎝

ρ1(t) 0 · · · 0
0 ρ2(t) · · · 0

0 0
. . . 0

0 0 · · · ρn(t)

⎞
⎟⎟⎟⎠ (44)

with blocks ρi (t) along the main diagonal. Moreover, the reduced density matrix
ρS(t) is obtained by the partial trace of �(t) taken over the auxiliary space.

In close analogy to (19) the dynamics may now be viewed as a transformation

Vt : �(0) → �(t), (45)

that preserves the block diagonal structure. It is important to emphasize that Vt is not
a quantum dynamical map in the usual sense because it is not an operation on the
space of states of the reduced system, but rather a map on the extended state space.
In fact, the transition from �(0) to the reduced density matrix ρS(0) = ∑i ρi (0) is
connected with a loss of information on the initial correlations, such that from the
mere knowledge of ρS(0) the dynamical behavior cannot be reconstructed.

It may be shown that Vt can be extended to a completely positive map for oper-
ators on Hext. Hence, we can construct an embedding of the dynamical transfor-
mation into a Lindblad dynamics on the extended state space. This is achieved by
the requirement that there exist a Lindblad generator K acting on operators of the
extended state space which preserves the block diagonal structure:

K
(∑

i

ρi ⊗ |i〉〈i |
)
=
∑

i

Ki (ρ1, . . . , ρn)⊗ |i〉〈i |, (46)

such that the time-evolution can be represented in the form

∑
i

ρi (t)⊗ |i〉〈i | = eKt

(∑
i

ρi (0)⊗ |i〉〈i |
)
. (47)

One can show that a Lindblad generator K with this property exists if and only if
the densities ρi (t) obey the master equation:

d

dt
ρi (t) = −i

[
Hi , ρi (t)

]+
∑

jλ

(
Ri j

λ ρ j (t)Ri j†
λ −

1

2

{
R ji†

λ R ji
λ , ρi (t)

})
. (48)
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The Hi are Hermitian operators on HS , while the Ri j
λ may be arbitrary operators on

HS . The details of the proof of this statement can be found in Ref. [24].
The equation of motion (48) represents the desired non-Markovian generaliza-

tion of the Lindblad equation (18) for the case of a classically correlated projection
super-operator. This equation has many physical applications. In fact, master equa-
tions of the form of Eq. (48) have been derived by several authors and applied to
various models featuring pronounced non-Markovian effects [24–29].

5 Conclusions

We have reviewed the theoretical treatment of non-Markovian quantum dynamics
within the framework of the projection operator techniques. It has been shown that
an efficient description of strong non-Markovian effects is made possible through
the construction of correlated projection super-operators P . The central idea behind
this construction is to take into account large system–environment correlations by
an extension of the set of dynamical variables. In fact, employing a correlated pro-
jection super-operator instead of a product-state projection, one enlarges the set of
dynamical variables from the reduced density matrix ρS to a collection of densities
ρi describing system states that are correlated with certain environmental states.

General physical conditions for a large class of correlated projection
super-operators have been formulated, demanding essentially that P can be expressed
in terms of a projective quantum channel that operates on the environmental vari-
ables. These conditions lead to a representation theorem for correlated projection
super-operators and to a non-Markovian generalization of the Lindblad equation
that is capable of modeling long memory times and large initial correlations, while
preserving the physical conditions of positivity and normalization.

The method developed here has many applications to physically relevant mod-
els featuring non-Markovian dynamics. The investigated class of projections does
not exhaust all possibilities. Future investigations should include the formulation of
further classes of correlated projections, the study of time-dependent generators, as
well as the application of correlated maps that project onto nonseparable, entangled
quantum states.
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5. P. Štelmachovič, V. Bužek: Phys. Rev. A 64, 062106 (2001); Phys. Rev. A 67, 029902(E)
(2003) 125

6. J. Schliemann, A. Khaetskii, D. Loss: J. Phys.: Condens. Matter 15, R1809 (2003) 125
7. J. Gemmer, M. Michel: Europhys. Lett. 73, 1 (2006) 125
8. J. Gemmer, M. Michel, G. Mahler: Quantum Thermodynamics, Lecture Notes in Physics, vol.

657 (Springer, Berlin, Heidelberg, New York, 2004) 125
9. M. Michel, G. Mahler, J. Gemmer: Phys. Rev. Lett. 95, 180602 (2005) 125

10. S. Nakajima: Progr. Theor. Phys. 20, 948 (1958) 125
11. R. Zwanzig: J. Chem. Phys. 33, 1338 (1960) 125
12. F. Haake: Statistical Treatment of Open Systems, Springer Tracts in Modern Physics, vol. 66

(Springer, Berlin, 1973) 125
13. R. Kubo, M. Toda, N. Hashitsume: Statistical Physics II. Nonequilibrium Statistical Mechan-

ics (Springer, Berlin, 1991) 125
14. F. Shibata, Y. Takahashi, N. Hashitsume: J. Stat. Phys. 17, 171 (1977) 126
15. S. Chaturvedi, F. Shibata: Z. Phys. B 35, 297 (1979) 126
16. F. Shibata, T. Arimitsu: J. Phys. Soc. Jap. 49, 891 (1980) 126
17. C. Uchiyama, F. Shibata: Phys. Rev. E 60, 2636 (1999) 126
18. A. Royer: Phys. Lett. A 315, 335 (2003) 126
19. H.P. Breuer: Phys. Rev. A 70, 012106 (2004) 126
20. V. Gorini, A. Kossakowski, E.C.G. Sudarshan: J. Math. Phys. 17, 821 (1976) 126, 131
21. G. Lindblad: Commun. Math. Phys. 48, 119 (1976) 126, 131
22. H. Spohn: Rev. Mod. Phys. 52, 569 (1980) 126
23. H.P. Breuer, D. Burgarth, F. Petruccione: Phys. Rev. B 70, 045323 (2004) 126, 131
24. H.P. Breuer: Phys. Rev. A 75, 022103 (2007) 126, 132, 133, 135, 138
25. H.P. Breuer, J. Gemmer, M. Michel, Phys. Rev. E 73, 016139 (2006) 126, 131, 132, 138
26. A.A. Budini: Phys. Rev. A 74, 053815 (2006) 126, 138
27. A.A. Budini: Phys. Rev. E 72, 056106 (2005) 126, 138
28. M. Esposito, P. Gaspard: Phys. Rev. E 68, 066112 (2003) 126, 138
29. M. Esposito, P. Gaspard, Phys. Rev. E 68, 066113 (2003) 126, 138
30. R. Kubo: J. Math. Phys. 4, 174 (1963) 129
31. A. Royer: Phys. Rev. A 6, 1741 (1972) 129
32. N.G. van Kampen: Physica 74, 215 (1974) 129
33. N.G. van Kampen: Physica 74, 239 (1974) 129
34. A. Royer: Aspects of Open Quantum Dynamics. In: Irreversible Quantum Dynamics, Lecture

Notes in Physics, vol. 622, ed by F. Benatti, R. Floreanini (Springer, Berlin, Heidelberg, New
York, 2003) pp. 47–63 130

35. S. Tasaki et al.: Ann. Phys. 322, 631 (2007) 130
36. K. Yuasa et al.: Ann. Phys. 322, 657 (2007) 130
37. B. Vacchini: Phys. Rev. Lett. 84, 1374 (2000) 131
38. B. Vacchini: J. Math. Phys. 42, 4291 (2001) 131
39. K. Hornberger: Phys. Rev. Lett. 97, 060601 (2006) 131
40. V. Romero-Rochin, I. Oppenheim: Physica A 155, 52 (1989) 132
41. V. Romero-Rochin, A. Orsky, I. Oppenheim: Physica A 156, 244 (1989) 132
42. V. Gorini, M. Verri, A. Frigerio: Physica A 161, 357 (1989) 132
43. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki: Quantum Entanglement,

arXiv:quant-ph/0702225 134



Testing Quantum Mechanics
in High-Energy Physics

Beatrix C. Hiesmayr

In this set of lectures we show that particle physics can also contribute to fundamen-
tal questions about quantum mechanics (QM) and even shine new light in the fine
workings of quantum physics and this at scales of energies which are not available
for usual quantum systems. In particular the massive meson–antimeson systems are
specially suitable as they offer a unique laboratory to test various aspects of particle
physics (CP violation, CPT violation, etc.) as well as to test the foundations of QM
(local realistic theories versus QM, Bell inequalities, decoherence effects, quantum
marking and erasure concepts, Bohr’s complementary relation, etc.).

Our focus lies upon

• Bell inequalities: Can one find setups for testing local realistic theories versus
QM in experiments? What has a symmetry violation in particle physics to do
with nonlocality? (Sect. 2)

• Quantum Erasers: “Erasing the Past and Impacting the Future,” possible with
K–mesons? Are there new eraser options? Can they be realized in near future
experiments? (Sect. 3)

• How can decoherence models look like for mesons? How do mesons “lose” cer-
tain quantum features, e.g., entanglement? Can this be measured in experiments?
(Sect. 4)

1 Short Manual to Neutral Kaons

In his 1935 paper [1] Erwin Schrödinger introduced the notion of entanglement
(German: “Verschränkung”) in reaction to the Einstein, Podolsky, and Rosen (EPR)
paper [2] to stress “the basic essence” of quantum mechanics (QM). Since then
many experiments in different fields of physics have been performed. Most of these
experiments deal with ordinary matter. However, there are many more different
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kinds of particles which can be found in our universe. And interestingly, we can
find among them as well systems, e.g., meson–antimeson systems, which show the
peculiar EPR-correlations.

A meson consists of a quark and an anti-quark. For example there is the neutral
kaon system (K 0(s̄d), K̄ 0(sd̄)) or the neutral B-meson system (B0(b̄d), B̄0(bd̄)).
The quarks s/b are called strange and beauty, respectively. These systems are entan-
gled in their flavor quantum number, i.e., strangeness or beauty. Both systems can
be handled within the same theoretical formalism; however, in this work we focus
on kaons, and B-mesons are only mentioned when interesting (this will be clear
later).

We start by giving a short historical introduction followed by introducing the
neutral kaons as viewed nowadays. Then we proceed to Bell inequalities or if local
realistic theories can be refuted also for neutral kaons. Then we discuss different
types of “kaonic” quantum eraser where we find a new type not offered by other
quantum systems and last but not least we discuss different decoherence models
and their experimental tests.

1.1 The Discovery of Kaons

What are K-mesons or simply kaons? There have been a lot of puzzles about these
particles before a good description was found. Let us shortly review a part of the
story, see, e.g., Ref. [3].

In the year 1947 Rochester and Buther studied cosmic-ray showers with a cloud-
chamber, and observed a V -shaped track which they interpreted as the decay in flight
of a new heavy neutral particle. The momenta of the charged decay products could
be measured by the curvature of the tracks in the applied magnetic field, and this
knowledge, combined with the measurements of the opening angle of the V and of
the ionization density of the tracks, yielded an estimated mass of about a thousand
times the electron mass. Nobody at the time could have imagined what “strange”
behavior this particle would show and what interesting implementations for theory
as well for experiments it would provide!

Repetition of the experiment showed that these particles, together with a lot of
other new particles, appeared quite often in cloud-chamber photographs. This indi-
cated that they were produced with a frequency of a few percent relative to pions,
the particles predicted by Yukawa in 1935, which had been discovered at about the
same time. To be produced as often as this, these particles need to interact with
matter almost as strongly as pions do. It was then surprising that they lived long
enough to travel a measurable distance in the cloud-chamber; the paradox became
more pronounced when it was found that the decay products were none other than
pions.

If these particles were coupled so strongly to nucleons, one would expect a decay
time of about 10−22s! There were also other “strange” particles found with this
peculiar contrast in the behavior between production and decay.
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The solution to the paradox was found in the so-called “strangeness” scheme by
Gell-Mann [4], Nishijima and Nakano [5] in 1953, whereby a new quantity called
“strangeness” is introduced through the definition

S = 2

(
Q − I3 − B

2

)
. (1)

The baryon number B is a quantity assigned for example to neutrons and protons
which is assumed to be additively conserved to account for the stability of atomic
nuclei. The law of baryon conservation rests on very strong empirical evidence:
the proton lifetime. Q is the electric charge and is also presumed to be exactly
conserved. I3 is the third component of the isospin, a concept which was introduced
to describe the so-called charge-independence of nuclear forces for neutrons and
protons. Nuclear and pion–nucleon interactions are known to be invariant under
such isospin transformations to an accuracy of a few percent and all known devi-
ations can be ascribed to the action of electro-magnetic interactions which are not
isospin invariant. Gell-Mann, Nishijima, and Nakano argued that since strange par-
ticles evidently interact strongly with nucleons and pions, the simplest way to assure
that interactions involving virtual strange particles do not disturb this well-known
approximate symmetry of nuclear interactions is to extend the concept of isospin to
apply also to strange particles. Thus every strange particle must be characterized by
a well-defined value of I , respectively I3. For pions and nucleons the quantity on
the r.h.s. of (1), i.e., the strangeness number S, vanishes, so these are by definition
non-strange particles.

It is clear from (1) that a particle for which S is non-zero cannot transform
into any system of non-strange particles through interactions which conserve B,
Q, and I3. As has already been stated, B- and Q-conservation apply absolutely, as
far as physicists are presently aware, to all interactions. About 1953 Gell-Mann,
Nishijima, and Nakano suggested that I3 is not conserved in all interactions respon-
sible for strange particles. Assuming that I3 and therefore S is conserved, then
interactions are of a strength similar to nuclear forces, in such a way that they
could account for the relatively large cross sections for the production of strange
particles. By taking the I3-nonconserving interactions to be much weaker (in fact
similar in strength to the previously known decay interactions responsible for β-
decay or π -decay) there was no difficulty in simultaneously explaining their slow
decay. Every aspect of the strangeness scheme has been brilliantly confirmed and
there is no doubt in its essential correctness. It has led to the nowadays accepted
Standard Model (SM) of particle physics. We shall not, however, pursue this subject
any further except in relation to the neutral kaon.

1.2 Kaons as Qubits and Quantum States

K-mesons are bound states of quarks and anti-quarks (qq̄), where the quark (q =
u, d, s) can be the up, down, or strange quark, and can be summarized in the fol-
lowing table:
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K -meson Quarks S I3

K+ us̄ +1 +1/2

K− ūs −1 −1/2

K 0 ds̄ +1 −1/2

K̄ 0 d̄s −1 +1/2

K 0 particle K̄ 0 antiparticle S strangeness I isospin

Not just for particle physicists the neutral kaon system is unique; these strange
mesons are also fantastic quantum systems, we could even say they are selected by
Nature to demonstrate fundamental quantum principles such as

• superposition principle,
• oscillation and decay property,
• quasi-spin property.

Their mass is about 497 MeV and they are pseudoscalars J P = 0− . They interact
via strong interactions which are S conserving and weak interactions which are S
violating, see Eq. (1). It is due to the weak interactions that the kaons change their
oscillation, K 0 ←→ K̄ 0 . Both mesons K 0 and K̄ 0 have transitions to common
states, therefore they mix, that means they oscillate between K 0 and K̄ 0 before
decaying. For example if we have at time t = 0 a K 0 then it can transform virtually
into two pions and then recombine into a K̄ 0 by the following Feynman graph.

Quantum mechanically we can describe the kaons in the following way. Kaons
are characterized by their strangeness quantum number +1,−1:

S|K 0〉 = +|K 0〉 , S|K̄ 0〉 = −|K̄ 0〉 , (2)

and the combined operation CP (C, charge conjugation; P , parity) gives

CP |K 0〉 = −|K̄ 0〉 , CP |K̄ 0〉 = −|K 0〉 . (3)

It is straightforward to construct the CP eigenstates

|K 0
1 〉 =

1√
2

{|K 0〉 − |K̄ 0〉} , |K 0
2 〉 =

1√
2

{|K 0〉 + |K̄ 0〉} , (4)

a quantum number conserved in strong interactions

CP |K 0
1 〉 = +|K 0

1 〉 , CP |K 0
2 〉 = −|K 0

2 〉 . (5)

However, due to weak interactions CP symmetry is violated and the kaons decay
in physical states, the short- and long-lived states, |KS〉, |KL〉, which differ slightly
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in mass, Δm = mL − mS = 3.49 × 10−6 eV, but immensely in their lifetimes and
decay modes:

|KS〉 = 1

N

{
p |K 0〉 − q |K̄ 0〉} , |KL〉 = 1

N

{
p |K 0〉 + q |K̄ 0〉} . (6)

The weights p = 1+ ε, q = 1− ε, with N 2 = |p|2+ |q|2 contain the complex CP
violating parameter ε with |ε| ≈ 10−3. CPT invariance is assumed (T , time rever-
sal). The short-lived K-meson decays dominantly into KS −→ 2π with a width or
lifetime Γ −1

S ∼ τS = 0.89×10−10 s and the long-lived K-meson decays dominantly
into KL −→ 3π with Γ −1

L ∼ τL = 5.17 × 10−8 s. However, due to CP violation
we observe a small amount KL −→ 2π , for which in 1980 Fitch and Cronin got the
Nobel Prize, see Fig. 1 (more details about CP violation follow in Sect. 1.4).

In this description the superpositions (4) and (6)—or quite generally any vector
in the two-dimensional complex Hilbert space of kaons—represent kaonic qubit
states in analogy to the qubit states in quantum information. We will call such
general superpositions of the strangeness eigenstates quasi-spin states.

1.3 Strangeness Oscillation

Before we discuss CP violation, let us consider a single kaon evolving in time.
KS, KL are eigenstates of a non-Hermitian “effective mass” Hamiltonian

H = M − i

2
Γ (7)

satisfying

H |KS,L〉 = λS,L |KS,L〉 with λS,L = mS,L − i

2
ΓS,L . (8)

Since the decaying states evolve—according to the Wigner–Weisskopf approxima-
tion—exponentially in time

|KS,L (t)〉 = e−iλS,L t |KS,L〉 , (9)

the subsequent time evolution for K 0 and K̄ 0 is given by

|K 0(t)〉 = g+(t)|K 0〉 + q

p
g−(t)|K̄ 0〉 , (10)

|K̄ 0(t)〉 = p

q
g−(t)|K 0〉 + g+(t)|K̄ 0〉, (11)

with

g±(t) = 1

2

[±e−iλS t + e−iλL t
]
. (12)
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Supposing that a K 0 beam is produced at t = 0, e.g., by the strong process π− +
p −→ K 0 + Λ0, then the probability of finding a K 0 at time t in the beam is
calculated to be

P(K 0, t ; |K 0|) = ∣∣〈K 0|K 0(t)〉∣∣2 =
∣∣∣∣〈K 0| N

2p

{
e−iλS t |KS〉 + e−iλL t |KL〉

}∣∣∣∣
2

= |1
2

e−iλS t + 1

2
e−iλL t |2

= 1

4

{
e−ΓS t + e−ΓL t + 2Re{e−iΔmt }e−Γ t

}

= 1

4

{
e−ΓS t + e−ΓL t + 2 cos(Δmt)e−Γ t

}
(13)

or to find a K̄ 0 at time t :

P(K̄ 0, t ; |K 0|) = ∣∣〈K̄ 0|K 0(t)〉∣∣2 =
∣∣∣∣〈K̄ 0| N

2p

{
e−iλS t |KS〉 + e−iλL t |KL〉

}∣∣∣∣
2

= | q

2p
e−iλS t − q

2p
e−iλL t |2

= |q|2
4|p|2

{
e−ΓS t + e−ΓL t − 2 cos(Δmt)e−Γ t

}
, (14)

with Δm = mL − mS and Γ = 1
2 (ΓL + ΓS) .

The K 0 beam oscillates with frequency Δm/2π , where Δm τS ≈ 0.47. The
oscillation is clearly visible at times of the order of a few τS , before all KSs have
died out leaving only the KLs in the beam. So in a beam which contains only K 0

mesons at the beginning t = 0 there will occur K̄ 0 far from the production source
through its presence in the KL meson and this is called strangeness oscillation.

1.4 CP Violation

Now let us consider the charge asymmetry term defined by

δ(t) = P(K 0, t ; |K 0|)− P(K̄ 0, t ; |K 0|)
P(K 0, t ; |K 0|)+ P(K̄ 0, t ; |K 0|)

=
|p|2 − |q|2

N 2
(e−ΓS t + e−ΓL t )+ 2 cos(Δmt)e−Γ t

(e−ΓS t + e−ΓL t )+ |p|
2 − |q|2
N 2

2 cos(Δmt)e−Γ t

= cos(Δmt)+ δ cosh(ΔΓ/2 t)

cosh(ΔΓ/2 t)+ δ cos(Δmt)
, (15)
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with δ = |p|2−|q|2
|p|2+|q|2 and ΔΓ = ΓL −ΓS . Expanding in the small CP violating param-

eter δ we obtain

δ(t) = cos(Δmt)

cosh(ΔΓ/2 t)
+ δ (1− cos2(Δmt)

cosh2(ΔΓ/2 t)
)+ O(δ2). (16)

For times t ≈ τS one observes the strangeness oscillation, while for times t  τS

one is sensitive to the small CP violating parameter δ. For large times t only the
long-lived component KL survives.

Experimentally one considers the total decay constants of the long-lived state
into the l3 channel (l stands for lepton, here electron or muon)

δl = Γ (KL → π−l+νl )− Γ (KL → π+l−ν̄l)

Γ (KL → π−l+νl )+ Γ (KL → π+l−ν̄l)
, (17)

which would be zero for CP invariance. One finds that this leptonic asymmetry
is nonvanishing, namely δl ≈ 10−3. In our formalism and with the suitable phase
choices this quantity equals

δl = δ = |p|
2 − |q|2

|p|2 + |q|2 =
2Re{ε}
1+ |ε|2 ≡ 〈KS|KL〉. (18)

The empirical fact that the charge asymmetry does not vanish has the following
meaning for physics: First, it is now possible to define the electric charge in an
absolute sense. Positive charge is the charge of the lepton more often produced
in the semileptonic KL decays. And second, through CP violation we have an
absolute definition of left and right, thus there is a difference between the world
and the anti-world.

1.5 Quasi-spin of Kaons and Analogy to Photons

In comparison with spin- 1
2 particles or with photons having the polarization direc-

tions V (vertical) and H (horizontal), it is very instructive to characterize the kaons
by a quasi-spin (for details see Ref. [6]). We can regard the two states |K 0〉 and
|K̄ 0〉 as the quasi-spin states up |↑〉 and down |↓〉 and can express the operators
acting in this quasi-spin space by Pauli matrices. So we identify the strangeness
operator S with the Pauli matrix σ3, the CP operator with (−σ1) and for describ-
ing CP violation we also need σ2. In fact, the Hamiltonian (7) then has the
form

H = a1+ b · σ , (19)
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with
b1 = b cosα, b2 = b sinα, b3 = 0 ,

a = 1

2
(λL + λS), b = 1

2
(λL − λS) , (20)

and the angle α is related to the CP violating parameter ε by

eiα = 1− ε

1+ ε
. (21)

The kaonic—quasi-spin—photonic analogy is summarized in the following table:

Neutral kaon Quasi–spin Photon

|K 0〉 |↑〉z |V 〉
|K̄ 0〉 |↓〉z |H〉

|K 0
1 〉 |↖〉x |−450〉 = 1√

2
(|V 〉 − |H〉)

|K 0
2 〉 |↗〉x |+450〉 = 1√

2
(|V 〉 + |H〉)

|KS〉 |→〉y |L〉 = 1√
2
(|V 〉 − i|H〉)

|KL〉 |←〉y |R〉 = 1√
2
(|V 〉 + i|H〉)

Note that neglecting the small CP violation |K 0
1,2〉 are equivalent to the mass

eigenstates |KS,L〉. Thus the last analogy just emphasizes that in the kaon case we
have three important bases which in contrast to photons and spin- 1

2 particles are not
orthogonal.

A good optical analogy to the phenomenon of strangeness oscillation can be
achieved by using the physical effect of birefringence in optical fibers which lead
to the rotation of polarization directions. Thus H (horizontal) polarized light is
rotated after some distance into V (vertical) polarized light, and so on. On the
other hand, the decay of kaons can be simulated by polarization-dependent losses
in optical fibres, where one state has lower losses than its orthogonal state, see
Ref. [7].

The description of kaons as qubits reveals close analogies to photons but also
deep physical differences. Kaons oscillate, they are massive, they decay and
can be characterized by symmetries like CP . Even though some kaon features,
like oscillation and decay, can be mimicked by photon experiments, they are
inherently different since they are intrinsic properties of the kaon given by
Nature. This is a crucial point when discussing Bell inequalities or other quan-
tum features.
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1.6 Two Measurement Procedures

For neutral kaons there exist two physical alternative bases; accordingly we have
two observables for the kaons, namely the projectors on the two bases. The first
basis is the strangeness eigenstate basis {|K 0〉, |K̄ 0〉}; it can be measured by insert-
ing a piece of ordinary matter along the kaon trajectory, which corresponds to an
active measurement of strangeness. Due to strangeness conservation of the strong
interactions the incoming state is projected either onto K 0 by K 0 p → K+n or onto
K̄ 0 by K̄ 0 p → Λπ+, K̄ 0n → Λπ0 or K̄ 0n → K− p. Here nucleonic matter plays
the same role as a two channel analyzer for polarized photon beams.

Alternatively, the strangeness content of neutral kaons can be determined by
observing their semileptonic decay modes. The strange quark s decays weakly as
constituent of K̄ 0 :

Due to their quark content the kaon K 0(s̄d) and the anti-kaon K̄ 0(sd̄) have the
following definite decays:

K 0(ds̄) −→ π−(dū) l+ νl where s̄ −→ ū l+ νl

K̄ 0(d̄s) −→ π+(d̄u) l− ν̄l where s −→ u l− ν̄l , (22)

with l either muon or electron, l = μ, e . When studying the leptonic charge asym-
metry (compare with Eqs. (15) and (17))

δl = Γ (KL → π−l+νl )− Γ (KL → π+l−ν̄l)

Γ (KL → π−l+νl )+ Γ (KL → π+l−ν̄l)
, (23)

we notice that l+ and l− tag K 0 and K̄ 0, respectively, in the KL state, and the
leptonic asymmetry (23) is expressed by the probabilities |p|2 and |q|2 of finding a
K 0 and a K̄ 0, respectively, in the KL state:

δ = |p|
2 − |q|2

|p|2 + |q|2 . (24)

Obviously, the experimenter has no control of the kaon decay, neither of the mode
nor of the time. The experimenter can only sort at the end of the day all observed
events in proper decay modes and time intervals. We call this procedure opposite
to the active measurement described above a passive measurement procedure of
strangeness.

The second basis {KS, KL} consists of the short- and long-lived states having
well-defined masses mS(L) and decay widths ΓS(L). We have seen that it is the
appropriate basis to discuss the kaon propagation in free space, because these states
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preserve their own identity in time (9). Due to the huge difference in the decay
widths the KSs decay much faster than the KLs. Thus in order to observe if a prop-
agating kaon is a KS or KL at an instant time t , one has to detect at which time it
subsequently decays. Kaons which are observed to decay before � t + 4.8 τS have
to be identified as KSs, while those surviving after this time are assumed to be KLs.
The number 4.8τS is obtained by setting the probability to observe a KS equal to the

probability that a KL state does not decay, i.e., e−ΓS t != 1 − e−ΓL t −→ t ≈ 4.8τS .
This means that we equalized the errors in measuring both lifetime states and
misidentifications reduce only to a few parts in 10−3 (see also Refs. [8, 9]). Note
that the experimenter does not care about the specific decay mode; he records only
a decay event at a certain time. We call this procedure an active measurement of
lifetime.

Since the neutral kaon system violates the CP symmetry (recall Section 1.4) the
mass eigenstates are not strictly orthogonal, 〈KS|KL〉 �= 0. However, neglecting CP
violation—remember it is of the order of 10−3—the KSs are identified by a 2π final
state and KLs by a 3π final state. We call this procedure a passive measurement of
lifetime, since the kaon decay times and decay channels used in the measurement
are entirely determined by the quantum nature of kaons and cannot be in any way
influenced by the experimenter.

Summarizing, we have the following two measurement procedures for the strange-
ness and the mass-eigenstate basis:

Strangeness basis 〈K 0|K̄ 0〉 = 0

Active measurements Passive measurements

(strong interactions) (semileptonic decays)

K 0 + p −→ K+ + n K̄ 0(d̄s) −→ π+(d̄u) l− ν̄l

K̄ 0 + p −→ Λ+ π+ K 0(ds̄) −→ π−(dū) l+ νl

K̄ 0 + n −→ K− + p,Λ+ π0

Mass eigenstate basis 〈KS|KL〉 = 2Re{ε}
1+|ε|2 ≈ 3× 10−3

Active measurements Passive measurements

(free propagation) (2 or 3π decay modes)

→ any decay mode observed before → 2πs are identified as KSs

4.8τS are identified as KS’s → 3πs are identified as KLs

Misidentification: few parts in 10−3! Misidentification: few parts in 10−3!
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1.7 Entangled in Strangeness

Interestingly, also for strange mesons entangled states can be obtained, in analogy
to the entangled spin up and down pairs, or H and V polarized photon pairs. Such
states are produced by e+e−-colliders through the reaction e+e− → Φ → K 0 K̄ 0,
in particular at DAΦNE in Frascati, or they are produced in p p̄–collisions, like,
e.g., at LEAR at CERN. There, a K 0 K̄ 0 pair is created in a J PC = 1−− quantum
state and thus antisymmetric under C and P , and is described at the time t = 0 by
the entangled state:

|ψ(t = 0)〉 = 1√
2

{|K 0〉l ⊗ |K̄ 0〉r − |K̄ 0〉l ⊗ |K 0〉r
}
,

= NSL√
2
{|KS〉l ⊗ |KL〉r − |KL〉l ⊗ |KS〉r } , (25)

with NSL = N 2

2pq , in complete analogy to the entangled photon case

|ψ〉 = 1√
2
{|V 〉l ⊗ |H〉r − |H〉l ⊗ |V 〉r } ,

= 1√
2
{|L〉l ⊗ |R〉r − |R〉l ⊗ |L〉r } . (26)

The neutral kaons fly apart and are detected on the left (l) and right (r ) hand side
of the source. Of course, during their propagation the K 0 K̄ 0 pairs oscillate and the
KS, KL states decay. This is an important difference to the case of photons which
are stable.

Let us measure at time tl a K 0 meson on the left hand side and at time tr a K 0

or a K̄ 0 on the right hand side then we find an EPR–Bell correlation (Einstein–
Podolsky–Rosen) analogously to the entangled photon case with polarization V–V
or V–H. Assuming for simplicity stable kaons (ΓS = ΓL = 0) then we get the
following result for the quantum probabilities:

P(K 0, tl ; K 0, tr ) = P(K̄ 0, tl ; K̄ 0, tr ) = 1

4

{
1− cos(Δm(tl − tr ))

}
,

P(K 0, tl ; K̄ 0, tr ) = P(K̄ 0, tl ; K 0, tr ) = 1

4

{
1+ cos(Δm(tl − tr ))

}
, (27)

which is analogous to the probabilities of finding simultaneously two entangled pho-
tons along two chosen directions α and β:

P(α, V ; β, V ) = P(α, H ; β, H ) = 1

4

{
1− cos 2(α − β)

}
,

P(α, V ; β, H ) = P(α, H ; β, V ) = 1

4

{
1+ cos 2(α − β)

}
. (28)



152 B.C. Hiesmayr

Thus we observe a perfect analogy between times Δm(tl − tr ) and angles
2(α − β).

Alternatively, we can also fix the time and vary the quasi-spin of the kaon, which
corresponds to a rotation in quasi-spin space analogously to the rotation of polariza-
tion of the photon:

|k〉 = a|K 0〉 + b|K̄ 0〉 ←→ |α, φ; V 〉 = cosα|V 〉 + sinα eiφ |H〉 . (29)

Note that the weights a, b are not independent and not all kaonic superpositions are
realized in Nature in contrast to photons. Depicting the kaonic–photonic analogy we
have:

1.8 Kaons as Double Slits

The famous statement “the double slit contains the only mystery” of Richard Feyn-
man is well known; his statement about kaons is not less to the point “If there is
any place where we have a chance to test the main principles of quantum mechanics
in the purest way—does the superposition of amplitudes work or doesn’t it?— this
is it.” [10]. In this section we argue that single neutral kaons can be considered as
double slits as well.

Bohr’s complementarity principle or the closely related concept of duality in
interferometric or double-slit like devices are at the heart of quantum mechanics.
The qualitative well-known statement that “the observation of an interference pat-
tern and the acquisition of which-way information are mutually exclusive” has only
recently been rephrased to a quantitative statement [11, 12]:

P2(y)+ V2
0 (y) ≤ 1 , (30)

where the equality is valid for pure quantum states and the inequality for mixed ones.
V0(y) is the fringe visibility which quantifies the sharpness or contrast of the inter-
ference pattern (“the wave-like property”) and can depend on an external parameter
y, whereas P(y) denotes the path predictability, i.e., the a priori knowledge one can
have on the path taken by the interfering system (“the particle-like property”). It is
defined by

P(y) = |pI (y)− pI I (y)| , (31)

where pI (y) and pI I (y) are the probabilities for taking each path
(pI (y) + pI I (y) = 1). It is often too idealized to assume that the predictability
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and visibility are independent on an external parameter. For example, consider a
usual double slit experiment, then the intensity is generally given by

I (y) = F(y)
(
1+ V0(y) cos(φ(y)

)
, (32)

where F(y) is specific for each setup and φ(y) is the phase-difference between the
two paths. The variable y characterizes the detector position in this case, thus visi-
bility and predictability are y-dependent.

In Ref. [13] physical situations were investigated for which the expressions of
V0(y),P(y) and φ(y) can be calculated analytically. This included interference pat-
terns of various types of double slit experiments (y is linked to position), but also
oscillations due to particle mixing (y is linked to time), e.g., by the kaon system,
and also Mott scattering experiments of identical particles or nuclei (y is linked to a
scattering angle). All these two-state systems belonging to distinct fields of physics
can then be treated via the generalized complementarity relation in a unified way.
Even for specific thermodynamical systems Bohr’s complementarity can manifest
itself, see Ref. [14]. Here we investigate briefly the neutral kaon case; for more
details and applications to other systems see Ref. [13].

The time evolution of an initial K 0 state is given by Eq. (10) (in the following
CP violation effects can safely be neglected):

|K 0(t)〉 = 1√
2

e−imL t− ΓL
2 t
{

eiΔmt+ ΔΓ
2 t |KS〉 + |KL〉

}
, (33)

where we denoted ΔΓ = ΓL − ΓS < 0 . We are only interested in kaons which
survive up to a certain time t , thus we consider the following normalized state:

|K 0(t)〉 ∼= 1√
2 cosh(ΔΓ

2 t)
e−

ΔΓ
4 t
{

eiΔmt+ ΔΓ
2 t |KS〉 + |KL〉

}
. (34)

State (34) can be interpreted as follows. The two mass eigenstates |KS〉, |KL〉 repre-
sent the two slits. At time t = 0 both slits have the same width and as time evolves
one slit decreases as compared to the other; however, in addition the whole double
slit shrinks due to the decay property of the kaons. This analogy gets more obvious
if we consider for an initial K 0 the probabilities for finding after a certain time t a
K 0 or a K̄ 0 state, i.e., the strangeness oscillation:

P(K 0, t) = ∣∣〈K 0|K 0(t)〉∣∣2 = 1

2

{
1+ cos(Δmt)

cosh(ΔΓ
2 t)

}
,

P(K̄ 0, t) = ∣∣〈K̄ 0|K 0(t)〉∣∣2 = 1

2

{
1− cos(Δmt)

cosh(ΔΓ
2 t)

}
. (35)

We observe that the oscillating phase is given by φ(t) = Δm t and the time-
dependent visibility by
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V0(t) = 1

cosh(ΔΓ
2 t)

, (36)

which is maximal at t = 0. The “which width” information, analogously to the
“which way” information in usual double slit experiments, can be directly calculated
from Eq. (34) and gives the following predictability:

P(t) = |P(KS, t)− P(KL , t)| =
∣∣∣∣∣

e
ΔΓ

2 t − e−
ΔΓ

2 t

2 cosh(ΔΓ
2 t)

∣∣∣∣∣ =
∣∣∣∣ tanh

(ΔΓ

2
t
)∣∣∣∣ . (37)

The larger the time t is, the more probable the propagation of the KL component
is, because the KS component has died out; the predictability converges to its upper
bound 1.

Both expressions, the predictability (37) and the visibility (36), satisfy the com-
plementary relation (30) for all times t with the equality sign:

P2(t)+ V2
0 (t) = tanh2

(ΔΓ

2
t
)+ 1

cosh2(ΔΓ
2 t)

= 1 . (38)

For time t = 0 there is full interference, the visibility is V0(t = 0) = 1, and we have
no information about the lifetimes or widths, P(t = 0) = 0. This corresponds to the
usual double slit scenario. For large times, i.e., t  1/ΓS , the kaon is most probable
in a long-lived state KL and no interference is observed, we have information on the
“which width.” For times between the two extremes we obtain partially information
on “which width” and on the interference contrast due to the natural instability of
the kaons. However, the full information on the system is contained in Eq. (30) or
rather in Eq. (38) and is for pure systems always maximal.

The complementarity principle was phrased by Niels Bohr in an attempt
to express the most fundamental difference between classical and quantum
physics. According to this principle, and in sharp contrast to classical physics,
in quantum physics we cannot capture all aspects of reality simultaneously, the
information content is always limited. Neutral kaons encapsulate indeed this
peculiar feature in the very same way as a particle traveling through a double
slit. But kaons are double slits provided by Nature for free!

1.9 Basic Definitions: Summarized

The normalization and the relative phase of the eigenvectors of the non-Hermitian
mass matrix H , (7), are chosen by

〈KS|KS〉 = 〈KL |KL〉 = 1,

〈KS|KL〉 = 〈KS|KL〉∗ ≥ 0. (39)
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CPT(T, time reversal) invariance is assumed, but not CP-invariance. The follow-
ing definitions (phase choices) are made:

p = 1+ ε

q = 1− ε

N 2 = |p|2 + |q|2 = 2(1+ |ε|2)

where ε is called the (indirect) CP violating parameter in mixing.

• The strangeness eigenstates K 0, K̄ 0:

|K 0〉 = 1√
2
{ |K 0

1 〉 + |K 0
2 〉} =

N

2p
{ |KS〉 + |KL〉},

|K̄ 0〉 = 1√
2
{−|K 0

1 〉 + |K 0
2 〉} =

N

2q
{−|KS〉 + |KL〉}. (40)

• The mass eigenstates KS, KL :

|KS〉 = 1√
1+ |ε|2

{|K 0
1 〉 + ε|K 0

2 〉} =
1

N
{p|K 0〉 − q|K̄ 0〉},

|KL〉 = 1√
1+ |ε|2

{|K 0
2 〉 + ε|K 0

1 〉} =
1

N
{p|K 0〉 + q|K̄ 0〉}. (41)

• The CP eigenstates K 0
1 , K 0

2 :

|K 0
1 〉 =

1√
2
{|K 0〉 − |K̄ 0〉} =

√
1+ |ε|2
1− ε2

{|KS〉 − ε|KL〉},

|K 0
2 〉 =

1√
2
{|K 0〉 + |K̄ 0〉} =

√
1+ |ε|2
1− ε2

{|KL〉 − ε|KS〉}. (42)

The experimental measured quantity, the leptonic charge asymmetry δ, (23), is
formally derived by

〈K̄ 0|K̄ 0〉 = 1
!=

!= N 2

4|q|2 {〈KS|KS〉 + 〈KL |KL〉 − 〈KS|KL〉 − 〈KL |KS〉}

= N 2

4|q|2 {2− 2〈KS|KL〉}

=⇒ δ := 〈KS|KL〉 = |p|
2 − |q|2
N 2

= 2Re{ε}
1+ |ε|2 . (43)
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2 Bell Inequalities in High-Energy Physics

After some short introduction to the extensively discussed Bell inequalities, we pro-
ceed with kaons. We first introduce the most general CHSH–Bell inequality and then
discuss two cases. One sensitive to CP violation and one sensitive to strangeness.
The last one would allow a direct test of local realism, however, to find a violation
and to understand its nature we have to go deep into the matter.

2.1 Short Introduction to BIs

Bell inequalities are a compelling example of an essential difference between quan-
tum mechanics and classical physics. Understanding this difference is vital in learn-
ing how a quantum world works compared to the classical one, or more practically
how to use it for technical applications, such as quantum communication and the
quantum computations.

When one speaks in the everyday world of something like the moon or a human
being, we assume that the physical properties of that object have an existence inde-
pendent of its observation. The study of quantum theory and their immense veri-
fication in experiments forces us to conclude that an unobserved particle does not
possess physical properties which exist independently of observation. Rather, such
physical properties arise as a consequence of measurements performed upon the
system. For instance a neutral kaon does not possess definite properties of being a
particle with strangeness S = +1 and being a short-lived kaon each of which can be
revealed by performing the appropriate measurement. Rather, quantum mechanics
gives a set of rules which specify, given the state vector or the density matrix, the
probabilities for the possible measurement outcomes if we decide to measure its
strangeness content or its mass eigenstate.

Many physicists rejected this view of Nature and for non-quantum physicists
the above statement must sound crazy. Even the co-founders of quantum theory
were not satisfied with the achievements of their own developments. The most
famous paper is by Einstein, Podolsky and Rosen [2] from 1935 in which they —
as they believed — demonstrated that quantum mechanics is not a complete theory
of Nature. Their belief, nowadays called the EPR reality criterion, is:

If, without in any way disturbing a system, we can predict with certainty (i.e. with the
probability equal to unity) the value of a physical quantity, then there exists an element of
physical reality corresponding to this physical quantity.

They developed a gedanken experiment, nowadays known as the EPR-experiment.
They considered two particles flying in opposite directions where on the left hand
side the experimenter, usually called Alice, and on the right hand side the experi-
menter, called Bob, can perform measurements on their particle. Each of them can
choose actively among alternative setups, i.e., by exerting their free will. Then later
on they meet and compare their results. If the initial state is a maximally entangled
one, e.g., the antisymmetric Bell state
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|ψ−〉 = 1√
2

{| ⇑〉l ⊗ | ⇓〉r − | ⇓〉l ⊗ | ⇑〉r
}

= 1√
2

{|0〉l ⊗ |1〉r − |1〉l ⊗ |0〉r
}

= 1√
2

{|H〉l ⊗ |V 〉r − |V 〉l ⊗ |H〉r
}

= 1√
2

{|K 0〉l ⊗ |K̄ 0〉r − |K̄ 0〉l ⊗ |K 0〉r
}

= 1√
2

{|B0〉l ⊗ |B̄0〉r − |B̄0〉l ⊗ |B0〉r
}

= 1√
2

{|I 〉l ⊗ | ⇑〉r − |I I 〉l ⊗ | ⇓〉r
}
,

(44)

they observe strong correlations. If Alice finds in a certain direction spin up, then
if by chance Bob measures in the same direction he finds with 100% probability
that his particle is in the spin down state. Here the first line describes two spin- 1

2
particles, the second line is given in the general notation of qubits, |φ〉 = α|0〉+β|1〉,
and the third line describes entangled photons (H/V , horizontal/vertical polarized).
The fourth and fifth lines give the entangled state for K-mesons and B-mesons,
respectively. The last line describes a single neutron propagating through a two-way
interferometer (path I and path I I ) where the different paths correspond to different
spins. Thus the single neutron is entangled in its outer degrees of freedom (path) and
its inner degrees of freedom (spin).

To explain these correlations the EPR people argued that quantum mechanics
(QM) is incomplete in the sense they defined above. Each particle has to carry a
hidden parameter in order to ensure that the other particle always gives the opposite
result, if Alice and Bob by chance have measured in the same direction.

In 1964 John S. Bell proved the important theorem that a whole class of such
local realistic hidden variable theories cannot reproduce all statistical predictions of
QM, Refs. [15, 16]. He discovered that any local realistic theory forces the obtained
two-particle correlation functions to satisfy an inequality, called Bell inequality (BI),
whereas QM, in certain cases, violates explicitly this BI. The importance of Bell’s
theorem lies in the experimental feasibility to discriminate between QM and local
realistic theories. Abner Shimony has denoted that as a decision of a philosophical
question via an experiment.

Indeed, Nature had the last laugh on the EPR paradox. Many experiments
have been carried out, mainly with photons, e.g., Refs. [17–22], but also with
atoms, e.g., Ref. [19], and confirm the quantum mechanical predictions. Hasegawa
et al. in Ref. [23] reported an experiment with single neutrons in an interferomet-
ric device which shows a violation of a Bell-like inequality. The entanglement is
achieved not between two separate particles but between two degrees of freedom
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of a single neutron, namely, between the path it takes in the interferometer and its
spin component which is different for the two paths. The mathematical descrip-
tion of the entangled state is the same as for the previously mentioned systems, see
(44). However, as there are no two spatially separated particles, it is contextuality
rather than nonlocality that is tested. Neutrons are also suited to study geometri-
cal phases as the famous Berry phase, for a connection between Berry phases and
contextuality [24].

It is well known that these initially more philosophical considerations of Ein-
stein, Podolsky, and Rosen and Bell’s theorem triggered a totally new field with
ingenious and fascinating experiments and even new applications that will change
our daily life: for instance, quantum cryptography (see, e.g., Ref. [25]), quantum
teleportation [26] and its experimental realizations, e.g., Refs. [27, 28], and Shor’s
algorithm [29]. The consequences are far reaching and lead to a new discipline
called quantum information science. While prototypes in quantum cryptography
already exist, the realization of a quantum computer is still a formidable experi-
mental challenge.

Moreover, it has turned out that there is also a quite practical use for BIs:

• It has been proven that quantum cryptography protocols are only safe if a Bell
inequality is violated (see, e.g., Ref. [25] and references therein).

• In the quantum communication complexity field Bell inequalities are necessary
and sufficient conditions for quantum protocols to beat the classical ones.

2.2 Bell Inequalities in High-Energy Physics

Knowing that in high-energy physics entangled systems also exist, it is obvious to
ask whether Bell inequalities can also be violated for such massive systems pro-
duced in accelerators?

It turned out that the question can not be answered in a simple way. To describe
the challenging difference of mesons compared to other quantum systems, e.g.,
photons, is one important requirement. A general formalism that allows for the
description of decaying systems within quantum mechanics has been developed in
Ref. [30], applied to kaons in Ref. [31], and is reviewed in Sect. 2.5.

The derivation of the CHSH–Bell type inequality for neutral particles is analo-
gous to the original proof of Clauser, Horne, Shimony and Holt in 1969, Ref. [32],
which is an extension of Bell’s original proof but under the more realistic assump-
tion that due to experimental imperfections not all particles can be detected. It can be
found in Ref. [6]. In contrast to the case of photons, for kaons each experimenter can
choose two properties, i.e., the quasi-spin (a certain superposition of the particle and
antiparticle state; Sect. 1.5) and the time the kaon propagates until the measurement.
The most general Bell inequality of the CHSH-type is given by

Skn ,km ,kn′ ,km′ (t1, t2, t3, t4) =∣∣Ekn ,km (t1, t2)− Ekn ,km′ (t1, t3)
∣∣+ |Ekn′ ,km (t4, t2)+ Ekn′ ,km′ (t4, t3)| ≤ 2 .

(45)
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As in the usual photon setup, Alice and Bob can choose among two settings,
i.e., Alice: {(kn, t1); (kn′, t4)} and Bob: ({(km, t2); (km ′ , t3)}). The expectation value
Ekn ,km (t1, t2) denotes then that Alice chooses to measure the quasi-spin kn at time t1
on the kaon propagating to her side and Bob chooses to measure km at time t2 on his
kaon. We notice already that in the neutral kaon case we have more options than in
the photon case; we can vary in the quasi-spin space or vary the detection times or
both. Furthermore, due to the time evolution and the decay property the kaon system
is more complex and involved.

2.3 Variation in the Quasi-spin: What Has CP Violation
to Do with Nonlocality?

Let us first set all times equal to zero and choose the quasi-spin states kn = KS, km =
K̄ 0, kn′ = km ′ = K 0

1 (definition of the mass-, strangeness-, CP-eigenstates, see
Sect. 1.2), then the inequality (45) turns into the Wigner-type inequality (first con-
sidered by F. Uchiyama [51]):

P(KS, K̄ 0) ≤ P(KS, K 0
1 )+ P(K 0

1 , K̄ 0), (46)

where P(KS, K̄ 0), respectively, denotes the probability to measure on the left-hand
side a short-lived kaon KS and on the right-hand side an anti-kaon K̄ 0.

For the initial antisymmetric Bell state (44) it is straightforward to calculate the
quantum mechanical probabilities. However, there is a non-physical phase in the
definition of the CP states for the neutral kaon system which is set to zero in con-
ventional physics. We are interested in the maximal violation of the Bell inequality,
thus when we optimize over that unphysical phase inequality (46) can be turned into
(see Ref. [50])

δ ≤ 0 , (47)

where δ is the CP violating parameter in mixing. This Bell inequality (47) is exper-
imentally testable!

Experimentally, δ corresponds to the leptonic asymmetry of kaon decays which
is measured to be δ ≈ 10−3 (see also Sect. 1.6). This value is in clear contradiction
to δ ≤ 0, the value required by the Bell inequality! In this sense the violation of a
symmetry in particle physics is surprisingly related to nonlocality.

Note also that if we interchange K̄ 0 with K 0 in inequality (46), we obtain δ ≥ 0 .
Thus both BIs induce that the premises of local realistic theories require δ = 0 and
hence that the CP symmetry is conserved.

For the Bell inequality under investigation we assumed that all quasi-spin states
are measured at time t = 0, i.e., at their creation. This is of course impossible;
including the times it turns out that for time greater 10−3τS no violation can be
obtained, see Ref [6].
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Although the Bell inequality (46) sensitive to the small CP violating parameter
δ is as loophole free as possible, the probabilities involved are not directly
measurable, because it is experimentally impossible to distinguish between a
short-lived state |KS〉 and the CP plus state |K 0

1 〉. Thus a direct experimen-
tal verification, i.e., measuring the probabilities, is not possible. One has to
consider other Bell inequalities for direct tests.

2.4 Variation in the Detection Times: A Bell Inequality Sensitive
to Strangeness

Now let us assume that the detection times are varied and the quasi-spin is chosen
in each case to be the anti-kaon state K̄ 0, thus the CHSH–Bell type inequality turns
into

SK̄ 0,K̄ 0,K̄ 0,K̄ 0 (t1, t2, t3, t4) =∣∣EK̄ 0,K̄ 0 (t1, t2)− EK̄ 0,K̄ 0 (t1, t3)
∣∣+ |EK̄ 0,K̄ 0 (t4, t2)+ EK̄ 0,K̄ 0 (t4, t3)| ≤ 2 .

(48)

Starting from the initial antisymmetric maximally entangled Bell state (44) there
cannot be found any violation for any choice of the four times!

To get an intuition of why this is the case we can consider the ratio of the oscil-
lation to decay given by x = Δm

Γ
≈ 2Δm

ΓS
≈ 1. If Nature provided the neutral kaon

system with a ratio that would have been greater than 2, the above Bell inequality
would be violated (see also Ref. [33]). Differently stated the system oscillates too
slow compared to the decay or vice versa. And of course physicists have no tools to
change the natural constants of a physical system.

Of course any Bell test in an experiment requires a detailed study of loopholes.
But the proof of the existence of correlations which are stronger than those explain-
able by any local realistic theory is even more limited for mesons. It is only conclu-
sive iff the following two main drawbacks are fulfilled (consult also Ref. [33]):

(1) “Active” measurements are required for any test, i.e., opening the possibility to
choose among alternative setups or in other words the experimenter needs to
have the free choice on the specific question asked to the system.

(2) When describing the time evolution of an unstable quantum system the “infor-
mation” of the decay products cannot be ignored.

Note that these requirements are not loopholes. The first one can only be fulfilled
by the neutral kaon system, because the decay rates of the other meson systems are
too short to insert a piece of matter; thus only neutral kaons can refute local real-
istic theories via Bell inequalities. Decay events cannot be considered, clearly they
are spontaneous events, i.e., no one has control when and into what kind of decay
products an incoming particle decays. The second drawback is solved by using an
appropriate formalism for decaying systems, which was rigourously developed in
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Ref. [30] and is reviewed in Sect. 2.5. The physics behind these drawbacks is dis-
cussed in detail in Ref. [33].

The main message is that the above expectation values are appropriable for a Bell
test in a real experiment, e.g., at DAΦNE machine in Frascati.

Is there really no way to violate the above Bell inequality sensitive to strangeness
(48) for a certain initial state and if there is, what would be the maximum value?

Developing the general formalism one learns that decay is a “kind of decoherence”
(Ref. [30] and Sect. 2.5). One knows from decoherence studies that some states are
more robust against the interaction with the environment, i.e., decoherence, than
others. This obviously rises the question whether we can find an initial state which
is more robust against the “decoherence” caused by the decay property and thus
would enable us to violate the Bell inequality.

The surprising result was indeed YES (Ref. [31])!

It turns out that a non-maximally entangled state violates the Bell inequality max-
imal. This is surprising because for bipartite qubits, e.g., entangled photons, one
knows, that the maximally entangled state1 gives the maximal violation of the Bell
inequality. Kaons are also two-state systems thus we would have expected that they
“behave” in a similar manner. Note that for systems with more than two degrees
of freedom the maximally entangled state does no longer automatically violate a
certain Bell inequality maximally [34]; however, there the situation is also more
complicated.

Fig. 1 First one is drawn by John S. Bell showing a young student with the habit to never wear
two socks of the same colour. Then celebrating the 60th birthday of Bell this student, Reinhold. A.
Bertlmann, draw a little “revenge,” which now can be extended to neutral kaons. The Bell whisky
drawn in the two last figures exists in reality and can be bought, e.g., in the U.K.

1 A maximally entangled state is defined by being pure and the trace over one subsystem gives the
totally mixed density matrix, the normed unity.
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To understand how nonlocality, entanglement and purity for the kaonic quantum
system are related we first use the general formalism for decaying systems and then
analyze the time evolution of single kaons and bipartite kaons. This enables us to
define a proper measure of entanglement and calculate the four expectation values of
the Bell inequality sensitive to strangeness (48) and moreover find states for which
this Bell inequality is violated. Given that these states can be produced in experi-
ments we would have a conclusive test of refuting local realism for the K-meson
system (except for some unavoidable loopholes), i.e., showing that at scales of these
energies Einstein’s spooky action at distant works.

2.5 Open Quantum Formalism of Decaying Systems

In order to discuss basic questions of QM we have to have an appropriate model to
describe the time evolution of the meson system, i.e., oscillation (K 0 ↔ K̄ 0) and
decay. In Ref. [30] it has been shown recently that a decaying system can be handled
with the open quantum system formulation, i.e., a master equation of the Lindblad
type (Refs. [35, 36] or consult, e.g., Ref. [37]). We now apply this formalism to
kaons.

The neutral kaon system is a decaying two-state system due to the strangeness
oscillation in time, K 0 ↔ K̄ 0, and is usually described via an effective Schrödinger
equation which we may write in the Liouville–von Neumann form (� ≡ 1):

d

dt
ρ = −i Heff ρ + i ρ H †

eff, (49)

where ρ is a 2 × 2 density matrix and Heff is non-Hermitian. Using the usual
Wigner–Weisskopf-approximation the effective Hamilton can be decomposed as
Heff = H− i

2Γ where the mass matrix H and the decay matrix Γ are both Hermitian
and positive. To obtain this Hamiltonian the weak interaction Hamilton is treated as
a perturbation and the interaction between the final states is neglected, in particular
the decay states of the neutral kaons, e.g., pions, are assumed to be stable. The
second approximation is to consider only the first pole contribution and this leads to
the exponential time evolution of the two diagonal states of Heff:

|KS/L (t)〉 = e−imS/L t e−
ΓS/L

2 t |KS/L〉 , (50)

mS/L and ΓS/L are the masses or decay constants of the short or long-lived kaons.
Considering Eq. (50)—which describes the surviving components of the neutral

kaon evolving in time—we notice that the state is not normalized for t > 0. Indeed,
we are not including all information on the system under investigation. For t > 0
the neutral kaon is a superposition of the surviving and decaying components. In
Ref. [30] it is shown that by at least doubling the original two-dimensional Hilbert
space the decay can be incorporated into the dissipator of the enlarged space via a
Lindblad operator. Let us start with the well-known master equation in the Lindblad
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form (Refs. [35, 36] or consult, e.g., Ref. [37]):

d

dt
ρ = −i[H, ρ]−D[ρ] , (51)

where the dissipator has the general form

D[ρ] = 1

2

∑
j

(A†
jA jρ + ρA†

jA j − 2A jρA†
j ) . (52)

In the case under consideration the density matrix is four-dimensional and lives
on Htot = Hs ⊗ H f where s/ f denotes “surviving” and “decaying” or “final,”
respectively, and has the following components:

ρ =
(

ρss ρs f

ρ f s ρ f f

)
,

where ρi j with i, j = s, f denote 2 × 2 matrices and ρs f = ρ
†
f s . The Hamiltonian

H is the Hamiltonian H from the effective Hamiltonian Heff extended to the total
Hilbert space Htot:

H =
(

H 0
0 0

)
.

To incorporate the decay ability we define one Lindblad generator, e.g. A0, to be

A0 =
(

0 0
B 0

)
with B : Hs → H f ,

where B†B = Γ and Γ is the decay matrix of Heff. All other Lindblad generators
( j > 0) can only act on the surviving component of the density matrix, i.e.:

A j =
(

A j 0
0 0

)
with j �= 0 .

If the master equation for the density matrix on the total Hilbert space Htot is
decomposed into the components of ρ it reads

ρ̇ss = −i[H, ρss]− 1

2
{B†B︸︷︷︸

Γ

, ρss} − D̃[ρss],

ρ̇s f = −iHρs f − 1

2
B†B︸︷︷︸
Γ

ρs f − 1

2

∑
j

A†
j A jρs f ,

ρ̇ f f = Bρss B† ,
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where D̃[ρss] = 1
2

∑
j=1(A†

j A jρ + ρA†
j A j − 2A jρA†

j ) describes any decoherence
or dissipation which may occur (see also Sect. 4).

Indeed, we immediately see that this master equation describes the original effec-
tive Schrödinger equation (49) and thus the decay of neutral kaons (and in addition
decoherence):

(1) By construction the time evolution of ρss is independent of ρs f , ρ f s and ρ f f .
(2) Furthermore ρs f , ρ f s completely decouples from ρss . Consequently, these com-

ponents ρs f , ρ f s can without loss of generality be chosen to be zero; they are
not physical and cannot be measured.

(3) With the initial condition ρ f f (0) = 0 the time evolution is solely determined by
ρss and simply given by

ρ f f (t) = B
∫ t

0
dt ′ρss(t ′)B† . (53)

And indeed, these are the properties which we expect to describe a particle decay!
Summarizing, we showed that particle decay and decoherence/dissipation are

related phenomena and that the Wigner Weisskopf approximation is Markovian and
completely positive (for a definition see Sect. 4.1).

2.6 Time Evolution of Single Kaons

Without loss of generality the initial state can be chosen in the mass eigenstate basis
{KS, KL}. The formal solution of Eq. (51) (Γ = 1

2 (ΓS + ΓL ) and the numbers
ρSS + ρL L = 1) is (neglecting CP violation)

ρ(t) =

⎛
⎜⎜⎝

e−ΓS tρSS e−iΔmt−Γ tρSL 0 0
eiΔmt−Γ tρ∗SL e−ΓL tρL L 0 0

0 0 FLρL L X∗

0 0 X FSρSS

⎞
⎟⎟⎠ ,

(54)

with FS/L = 1 − e−ΓS/L t and X =
√
ΓSΓL

−iΔm−Γ (1 − e−iΔmt−Γ t )ρSL . Clearly, we have
Tr ρ(t) = 1 for all t and the decay is caused by the environment (treating the neutral
kaon in QFT formalism, the decay would be caused by the QCD vacuum). The
surviving part of the single kaon evolving in time is represented by the upper 2× 2
block matrix ρss , the lower one by the decaying part ρ f f .

Only properties of the surviving components can be measured, e.g., by a piece of
matter an incoming beam is forced to react with the matter via the strong interaction
(which is strangeness conserving). If a reaction which can only be caused by a K̄ 0 is
detected, one records a yes-event (Y). If no K̄ 0 is detected a no-event (N) is recorded
(including a K 0 or a decay event). Then matter acts in the very same manner as an
ordinary polarisator for photons. Note that an experimenter can actively choose the
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initial state (up to experimental realization), the kind of detector (experimentally
very limited) and where to place the detector, i.e., how much “decoherence” the
system undergoes, whereas the kind of “decoherence” is given by Nature. Note that
this “decoherence” is fundamentally different from that in other quantum systems
which are stable. There the kind of decoherence depends on the environment, for
kaons it is intrinsic to the system.

Consequently, an operator P projecting onto the states ρss gives the two proba-
bilities, for Y or N , that a certain state is detected at time t :

Prob(Y, t) = Tr

((
P 0
0 0

)
ρ(t)

)
= Tr(Pρss(t)) and

Prob(N, t) = Tr

((
1− P 0

0 1

)
ρ(t)

)

= Tr((1− P)ρss(t))+ Tr(ρ f f (t))

= 1− Tr(Pρss(t)) .

Consequently, the expectation value becomes

EP (t) = Prob(Y, t)− Prob(N, t) = 2 Tr(Pρss(t))− 1

and is solely determined by the surviving component ρss!
We considered all possible projectors and the ρ f f enters in the probabilities only

via the trace, thus it is clear that the off-diagonal elements of ρ f f are not relevant
for any probability we may derive. This leaves a certain ambiguity in defining the
decaying components and therefore purity and entanglement. We choose the off-
diagonal elements of ρ f f in (54) equal to zero because they give the lowest purity
values.

Let us now consider the change of the properties of the state ρ(t) with time by
considering the purity defined by

Tr ρ(t)2 = Tr(ρss(t)2)+ Tr(ρ f f (t)2)

= Tr ρss(t)2 + (Tr ρ f f (t))2

= Tr ρss(t)2 + (1− Tr ρss(t))2

= ρ2
SS(1− 2e−ΓS t + 2e−2ΓS t )

+ρ2
L L (1− 2e−ΓL t + 2e−2ΓL t )+ 2|ρSL |2e−2Γ t .

Note that the second equality sign is only true if the off-diagonal elements of ρ f f

vanish. Otherwise, we would add an additional in general time-dependent factor
to the definition of the purity (for the formal integration of the order 10−2). Again
our definition of the purity is only depending on the surviving components. Starting
with an arbitrary initial pure state we see that the decay ability of the system leads
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to a decrease in purity for t > 0. For KS or KL the purity returns to 1 for t → ∞
depending on the decay constants, see Fig. 2. After a time t/τS/L = ln 2 the minimal
purity of 0.5 of a usual qubit system described by a 2×2 density matrix (trace state)
is reached. For other superpositions the purity oscillates to a certain final purity
which is not equal to 1. For an initial K 0 or K̄ 0 we reach the minimal purity of
0.375 at time t/τS = 401.881, i.e., about 2/3 of the lifetime of the long-lived state.
This is much lower than the purity of a qubit system. Indeed, this decaying system
— where only two degrees of freedom can be measured — behaves, with regard
to the purity properties, as a system with more degrees of freedom; neutral kaons
are more like a double slit evolving in time, see Ref. [38] and Sect. 1.8. Clearly,
we could renormalize the purity by choosing appropriate off-diagonal elements
of ρ f f .
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Fig. 2 (Color online) Here the purity Tr ρ(t)2 for single kaons (initially pure) for short (a) and
longer (b) time scales is shown (units in 1/ΓS): K - S: KS ; K - L: KL ; K - 0: K 0 or K̄ 0; K - L - S:
1/2|KS〉 +

√
3/4|KL 〉; K - S - L:

√
3/4|KS〉 + 1/2|KL 〉
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The minimal purity which can be reached for this decaying system is 0.333068
and is obtained for an initially mixed state (ρSS = 2/3; ρSL = 0; t/τS = 0.694012),
and is thus greater than 0.25, the minimal value for a 4 × 4 density matrix (trace
state). Note that in general it depends on the ratio between ΓS/ΓL and is therefore
intrinsic to the described meson system.

2.7 The Time Evolution for Two Kaons

Any density matrix of a single kaon evolving in time, (54), can be decomposed in
the following way:

ρ(t) =
∑
nm

fnm(t)ρnm |n〉〈m| .

Clearly, for two kaons in a product state we have

σ (t) =
∑
nmlk

fnm(t) flk(t)ρnmρlk |n〉〈m| ⊗ |l〉〈k| ,

and, consequently, any two-kaon state is then given by

σ (t) =
∑
nmlk

fnm(t) flk(t)σnmlk |n〉〈m| ⊗ |l〉〈k| , (55)

where the time-dependent weights can be assumed to factorize. In order to do this
one has to prove that the projectors commute with the generators of the time evo-
lution under the trace (this was proven in a different formulation in Ref. [39]). We
can even define a two-particle density matrix depending on the two different times
representing the times when the two kaons are measured, i.e.,

σ (tl, tr ) = diag{σssss(tl, tr ), σss f f (tl, tr ), σ f f ss(tl, tr ), σ f f f f (tl, tr )} ,

where σi i j j are 4× 4 matrices.
We are now interested in the entanglement of such a density matrix. As a measure

of entanglement we want to consider the entanglement of formation which is defined
by

EoF(ρ) = min
i

∑
i

pi S(Trl (|ψi 〉〈ψi |)) ,

where S is the von Neumann entropy, the trace is taken over one subsystem (left or
right) and ψi are the pure state decompositions of ρ. The von Neumann entropy is
defined by

S(ρ) = −Tr(ρ ln ρ) .
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A sufficient condition for entanglement is that under partial transpose (PT ) the
matrix has at least one negative eigenvalue. Only for bipartite two-level systems and
for 2 × 3 systems, PT is also necessary for detecting all entangled states. For the
density matrix under investigation PT acts in the following way:

PT [σ (tl, tr )] = diag{PT [σssss(tl, tr )], PT [σss f f (tl, tr )],

PT [σ f f ss(tl, tr )], PT [σ f f f f (tl, tr )]} .

The surviving–surviving block σssss can lead to negative eigenvalues, i.e., it can be
entangled, while the eigenvalues of the other blocks cannot become negative due to
the vanishing off-diagonal elements; the eigenvalues remain unchanged under PT .
Thus, whether the state under investigation is entangled depends only on σssss . For
4 × 4 matrices entanglement of formation is an increasing function of the com-
putable concurrence C, found by Hill and Wootters [40].2 Thus we can measure
entanglement by the concurrence of σssss .

To compute concurrence one defines the flipped matrix σ̃ssss = (σy⊗σy)σ ∗ssss(σy⊗
σy) where σy is the y-Pauli matrix and the complex conjugation is taken in the KS KL

basis. The concurrence is then given by the formula C = max{0, λ1− λ2− λ3− λ4}
where the λi s are the square roots of the eigenvalues, in decreasing order, of the
matrix σssss σ̃ssss .

Let us now consider a general pure state at t = 0 (with r2
1 + r2

2 + r2
3 + r2

4 = 1):

|ψ(0)〉 = r1eiφ1 |KS〉|KS〉 + r2eiφ2 |KS〉|KL〉
+r3eiφ3 |KL〉|KS〉 + r4eiφ4 |KL〉|KL〉 . (56)

Alice and Bob perform their measurements at certain times tl, tr , respectively. For a
general initial pure state the concurrence is derived to be

C(σssss(tl, tr )) = 2 |r1r4eiφ1+iφ4 − r2r3eiφ2+iφ3 | e−Γ (tl+tr ) .

It is simply the concurrence of the initial pure state multiplied by the time-dependent
damping factor. For one time equal to zero the decrease in entanglement is lowest.

2.8 The States Violating the Bell Inequality Sensitive
to Strangeness

For the two-particle state we obtain four probabilities:

2 For higher dimensions no computable function of entanglement of formation is known.
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Prob(Y, tl ; Y, tr ) = Tr(Pl ⊗ Prσssss) ,

Prob(Y, tl ; N , tr ) = Tr((1− Pl )⊗ 1(σssss + σss f f ))

Prob(N , tl ; Y, tr ) = Tr(1⊗ (1− Pr )(σssss + σ f f ss))

Prob(N , tl ; N , tr ) = 1+ Tr(Pl ⊗ Prσssss)

−Tr((1− Pl )⊗ 1σss f f )− (1− Pr )(σ f f ss),

and the expectation value is given by

EPl ,Pr (tl, tr ) = Prob(Y, tl ; Y, tr )+ Prob(N , tl ; N , tr )− Prob(Y, tl ; N , tr )−
= Prob(N , tl ; Y, tr )− 1

+ 2(Prob(Y, tl ; Y, tr )+ Prob(N , tl ; N , tr )), (57)

where we used the fact that the sum of all probabilities gives one.
As projectors we choose Pr,l = |K̄ 0〉〈K̄ 0|, and, after a cumbersome calculation,

the expectation value is

EK̄ 0,K̄ 0 (tl, tr ) = 1+ r2
1 e−ΓS (tl+tr ) + r2

2 e−ΓS tl−ΓL tr

+r2
3 e−ΓL tl−ΓS tr + r2

4 e−ΓL (tl+tr )

−r2
1 (e−ΓS tl + e−ΓS tr )− r2

2 (e−ΓS tl + e−ΓL tr )

−r2
3 (e−ΓL tl + e−ΓS tr )− r2

4 (e−ΓL tl + e−ΓL tr )

+2 r1r2 (1− e−ΓS tl ) cos(Δmtr + φ1 − φ2) e−Γ tr

+2 r1r3 cos(Δmtl + φ1 − φ3) e−Γ tl (1− e−ΓS tr )

+2 r2r4 cos(Δmtl + φ2 − φ4) e−Γ tl (1− e−ΓL tr )

+2 r3r4 (1− e−ΓL tl ) cos(Δmtr + φ3 − φ4) e−Γ tr

+2 r1r4 cos(Δm(tl + tr )+ φ1 − φ4) e−Γ (tl+tr )

+2 r2r3 cos(Δm(tl − tr )+ φ2 − φ3) e−Γ (tl+tr ) . (58)

We notice that for any initial state one always has damping functions from the decay
property in this system different from other two-state systems and the expectation
value converges for both times to infinity to+1. For the initial maximally entangled
Bell states |φ±〉 = 1

2 {|KS KS〉±|KL KL〉} (r2 = r3 = 0) the oscillation goes with the
sum of the times, different from the maximally entangled Bell states ψ± 1

2 {|KS KL〉±
|KL KS〉} (r1 = r4 = 0) where the oscillation only depends on the difference of the
times. Thus for φ± a violation of the Bell inequality could occur earlier. Only the
φ− violates the Bell inequality slightly S = 2.07, but there are states violating it
even more.

For all phases φi = 0 we find the value

S = 2.1175
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Fig. 3 In Fig. (a) the time-dependent S-function for the initial state |φ+〉 = 1
2 {|KS KS〉+ |KL KL 〉}

(dashed), the state ξ defined in the text (long dashed) and the state χ also defined in the text (solid)
(time in units of [ ΓS

Δm ]) is shown. For the initial state ξ we obtain the maximum violation. For the
initial state ξ the violation exists up to 1/ΓL

(state ξ (r1 = −0.8335; r2 = r3 = −0.2446; r4 = 0.4308): t1 = t2 = 0; t3 = t4 =
5.77τS). If we also vary over the phases we obtain a slightly higher value

S = 2.1596

(state χ (r1 = −0.7823; r2 = r3 = 0.1460; r4 = 0.5877;φ1 = −0.2751;φ2 = φ3 =
−0.6784;φ4 = 0): t1 = t2 = 1.79τS; t3 = t4 = 0), see also Fig. 3. For the above
cases the concurrence gives

C(ξ ) = 0.84 e−Γ (tl+tr ) and C(χ ) = 0.94 e−Γ (tl+tr ) .

In Fig. 4(a)–(c) purity versus concurrence diagrams are drawn. For φ+ we notice
that the “decoherence” caused by the decay exceeds the purity-concurrence values
of Werner states, which represent an upper limit for all possible decoherence modes
in this picture given by a Lindblad equation for an initially maximally entangled
qubit state, Ref. [48, 49]. An early decay of one kaon, Fig. 4(b), exceeds even
the purity-concurrence value of maximally entangled mixed bipartite qubit states
(MEMS) [41].

To sum up, the initial entanglement decreases with a sum of times, and it goes
hand in hand with a decrease in purity first which can then for latter times increase
again. For non-maximal entangled state the decrease of purity is much faster than
for the maximally entangled states. This seems to help to violate the Bell–CHSH
inequality though the ratio of oscillation to decay is low.

We show how to treat a single and bipartite decaying neutral kaon system in
quantum mechanics and analyze the states via purity, entanglement and nonlo-
cality. Only two degrees of freedom at a certain time can be measured reducing
the set of observables and leaving some elements of the state undefined.
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Fig. 4 (Colour online) In Fig. (a)–(c) a purity versus concurrence diagram is drawn (purity nor-
malized (dT rρ2 − 1)/(d − 1) with d = 4 for bipartite qubits and d = 16 for bipartite kaons). The
limiting curve represents the maximally entangled mixed bipartite qubit states (MEMS) [41] and
the nearly linear curve (dashed, purple) the Werner states for bipartite qubits. The dots are drawn
for different initial states and the time proceeds from 0 to 100 with a step width of 0.05 (units as
above). The smallest dots (red) for φ+, next to smallest dots (blue) ξ and the biggest dots (black)
are for χ . In Fig. (b) is shown the change in purity and concurrence for tl = tr = t , in (c) for
tl = 0; tr = t and in (d) for tl = 0.3; tr = t
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In contrast to the case of photons, for the neutral kaon system nonlocaliy is
a quite “dynamical” concept as correlations of states evolving up to different
times are involved. For entangled photons there is no difference whether in
principle the correlations are measured after one or several meters. With each
measurement the experimenter chooses among two observables: the quasi-spin
and the detection time. Consequently, considering Bell inequalities for mesons,
(45), one can vary in the quasi-spin space or vary the detection times or both.
If varying in the quasi-spins space and for simplicity choosing all times equal
to zero, there is a connection between nonlocality and the violation of a sym-
metry in high-energy physics, i.e., the CP symmetry (C=charge conjugation,
P=parity), Ref. [50]. Though the violation of this Bell inequality sensitive to
CP violation is obtained for a single parameter δ, which is measured even with
single kaons, a direct experimental verification, i.e., measuring the probabili-
ties involved, is not possible.

Choosing a quasi-spin, i.e., observing on both sides an anti-kaon or not, and
varying the times gives a Bell inequality sensitive to strangeness (48). Via
inserting a piece of matter at a certain position from the source (corresponding
to the detection time) this Bell inequality can in principle be realized experi-
mentally. One obtains maximal violations for certain initial states—currently
not available by experiments—for which the concurrence is not maximal in
partial agreement with Ref. [34] that optimal Bell tests do not require maxi-
mally entangled states for systems with more than two degrees of freedom. A
higher amount of entanglement does not necessarily imply an increase of a
violation of the Bell inequality under investigation; in fact, the Bell inequality
need not be violated at all due to the decay property.

Therefore, these results suggest that for the neutral kaon system nonlocality
and entanglement are indeed some distinct quantum features which manifest
themselves in a way different than for bipartite qubit or qutrit systems, and
their relation is subtler than one naively expects.

There exist other ideas to find testable Bell inequalities, see, e.g., Refs. [42–47]
and reference therein.

3 Kaonic Quantum Eraser

Two hundred years ago Thomas Young taught us that photons interfere. Nowadays,
experiments with very massive particles, like the fullerenes, have demonstrated this
fundamental feature of quantum mechanics [52] impressively. It seems that there
is no physical reason why not even heavier particles should interfere except for
technical ones. In Sect. 1.8 we have shown that the knowledge on the path through
the double slit is the reason why interference is lost. The gedanken experiment of
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Scully and Drühl in 1982 [53] surprised the physics community, if the knowledge
on the path of the particle is erased, interference is brought back again.

Since that work many different types of quantum erasures have been analyzed
and experiments were performed with atom interferometers [54] and entangled pho-
tons [55–60] where the quantum erasure in the so-called “delayed choice” mode
captures best the essence and the most subtle aspects of the eraser phenomenon. In
this case the meter, the quantum system which carries the mark on the path taken,
is a system spatially separated from the interfering system which is generally called
the object system. The decision to erase or not the mark of the meter system—and
therefore to observe or not interference—can be taken long after the measurement
on the object system has been completed. This was nicely phrased by Aharonov
and Zubairy in their review article [61] as “erasing the past and impacting the
future.”

Here we want to present four different types of quantum erasure concepts for
neutral kaons, Refs. [8, 62]. Two of them are analogous to performed erasure exper-
iments with entangled photons, e.g. Refs. [55, 56], sketched in Figs. 5 and 7. In
the first experiment with photons the erasure operation is carried out “actively,” i.e.,
by exerting the free will of the experimenter, whereas in the latter experiment the
erasure operation is carried out “partially actively,” i.e., the mark of the meter system
is erased or not by a well-known probabilistic law, e.g., by a beam splitter. However,
different to photons the kaons can be measured by an active or a passive procedure
(see Sect. 1.6).

Pol. at +45

QWP

QWP

HWP 0 /90
+45 /– 45

oriented at
or

Fig. 5 The setup for an active eraser is sketched. A bump beam transverses twice a, e.g., type II
crystal. The pairs produced in the first passage through the crystal cross two times a quarter-wave
plate (QWP) which transforms an original horizontal polarized photon into a vertical one and vice
versa. The pairs produced in the second passage through the crystal is directly directed to the
measurement devices. The signal (object) photon is always measured after crossing a polarization
analyzer aligned at +45◦. The idler (meter) photon crosses a half-wave plate (HWP) oriented at
0◦, 90◦ (first setup) or ±45◦ (second setup) and is then analyzed by a polarization beam splitter. In
the first setup—meter photon is measured in the H/V basis—one has full which way information,
namely if the pair was produced at the first or second passage. In the second setup—meter photon
is measured in the +45◦/ − 45◦ basis—the information on the first or second passage is erased:
one observes fringes or antifringes
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This offers new quantum erasure possibilities which can only be achieved with
kaons. And moreover proves the very concept of a quantum eraser, namely
sorting events to available information.

Discussion with the experimenters of the DAφNE machine in Frascati on how to
realize all four different possibilities described in the following are ongoing.

Active eraser with active measurements (S: active/active; T: active)

S, tl

Source

S, tr0

T, tr0

Fig. 6 The figure shows the two setups for an eraser with active marking and active measurements

3.1 Active Eraser with Active Measurements

Let us first discuss the photon analogy, e.g., the two experimental setups in Ref. [55].
In the first setup two interfering two-photon amplitudes are prepared by forcing a
pump beam to cross twice the same nonlinear crystal. Idler and signal photons from
the first down conversion are marked by rotating their polarization by 90◦ and then
superposed to the idler (i) and signal (s) photons emerging from the second passage
of the beam through the crystal. If type-II spontaneous parametric down conversion
were used, we had the state 3

|ψ〉 = 1√
2

{
|V 〉i |H〉s︸ ︷︷ ︸

second passage

− eiΔφ |H〉i |V 〉s︸ ︷︷ ︸
first passage

}
, (59)

where the relative phase Δφ is under control by the experimenter (the symbol ⊗
for the tensor product of the states is dropped from now on). The signal photon, the
object system, is always measured after crossing a polarization analyzer aligned at
+45◦, see Fig. 5. Due to entanglement, the vertical or horizontal idler polarization
supplies full which path information for the signal (object) system, i.e., whether it
was produced at the first or second passage. No interference can be observed in the
signal–idler joint detections. To erase this information, the idler photon has to be
detected in the +45◦/− 45◦ basis.

In case of entangled kaons the state is described by (25). The analogy with (59)
is quite obvious; however, kaons evolve in time, such that the state depends on the

3 The authors of Ref. [55] used type-I crystals in their experiment.
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D0

D4

D3

D2

D1

BSA

BSB

Position A

Position B

BS
y

Fig. 7 The setup of a partially active eraser is sketched. An entangled photon pair can be produced
either in region A or in region B. If the detectors D1 or D2 clicks, one knows the production
region A or B, i.e., one has full which path information. Clicks of the detectors D2 or D3 erase the
information; interference is observed. It is a partially active eraser, because the mark is erased by
a probabilistic law; however, the experimenter has still partial control over the erasure and she/he
can choose the ratio of transmittivity to reflectivity of the beam splitter BS A and BSB

two time measurements on the left-hand side, tl , and on the right-hand side, tr , or
more precise on Δt = tl − tr , when normalized4 to surviving kaon pairs:

|φ(Δt)〉 = 1√
1+ eΔΓΔt

{
|KL〉l |KS〉r − eiΔmΔt e

1
2 ΔΓΔt |KS〉l |KL〉r

}

= 1

2
√

1+ eΔΓΔt

{(
1− eiΔmΔt e

1
2 ΔΓΔt

){|K 0〉l |K 0〉r − |K̄ 0〉l |K̄ 0〉r }

+(1+ eiΔmΔt e
1
2 ΔΓΔt

){|K 0〉l |K̄ 0〉r − |K̄ 0〉l |K 0〉r }
}

.

(60)

We notice that the phase ΔmΔt introduces automatically a time-dependent relative
phase between the two amplitudes. The marking and erasure operations can be per-
formed on entangled kaon pairs as in the optical case discussed above. The object
kaon flying to the left hand side is measured always actively in the strangeness basis,
see Fig. 6. As in the optical version the kaon flying to the right hand side, the meter
kaon, is measured actively either in the strangeness basis by placing a piece of matter
in the beam or in the “effective mass” basis by removing the piece of matter. Both
measurements are actively performed. In the latter case we obtain information about
the lifetime, namely which width the object kaon has, and clearly no interference in
the joint detections can be observed.

3.2 Partially Passive Quantum Eraser with Active Measurements

Partially active eraser with active measurements (S: active/active; T: active)

4 Thanks to this normalization, we work with bipartite two-level quantum systems like polarization
entangled photons or entangled spin-1/2 particles. For an accurate description of the time evolution
of kaons and its implementation consult Ref. [6].
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S, tl

Source

S, tr0
T

Fig. 8 The figure shows the setup for a partially passive quantum marking and active measure-
ments on both sides

In Fig. 7 a setup realized in Ref. [56] is sketched where an entangled photon pair
is produced either at position A or B. “Clicks” on detector D1 or D4 provide “which
path” information. “Clicks” on detector D2 and D3 give no information about the
position A or B; interference is observed in the joint events of the two photons, see
Fig. 7.

For kaons a piece of matter is permanently inserted into both beams where the
one for the meter system at the right hand side is fixed at time t0

r , see Fig. 8. The
experiment observes the region from the source to the piece of matter at the right
hand side. In this way the kaon moving to the right—the meter system—takes the
choice to show “which width” information by its decay during its free propaga-
tion until t0

r or not by being absorbed in the piece of matter. Again strangeness or
lifetime is measured actively. The choice whether the “wave-like” property or the
“particle-like” property is observed is naturally given by the instability of the kaons.
It is “partially active,” because the experimenter can choose at which fixed time
t0
r the piece of matter is inserted. This is analogous to the optical case where the

experimenter can choose the transmittivity of the two beam-splitters BS A and BSB
in Fig. 7.

Furthermore, note that it is not necessary to identify KS versus KL for demon-
strating the quantum marking and eraser principle.

3.3 Passive Eraser with “Passive” Measurements on the Meter

Passive eraser with passive measurements on the meter (S: active/passive; T:
passive)

Next we consider the setup in Fig. 9. We take advantage—and this is specific
for kaons—of the passive measurement. Again the strangeness content of the object
system—kaon moving to the left hand side—is actively measured by inserting a

S, tl

Source

T TS

Fig. 9 The figure shows a setup of a quantum eraser which has no photon analog
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piece of matter into the beam. In the beam of the meter no matter is placed in, the
kaon moving to the right propagates freely in space. This corresponds to a passive
measurement of either strangeness or lifetime on the meter by recording the dif-
ferent decay modes of neutral kaons. If a semileptonic decay mode is found, the
strangeness content is measured. In the joint events interference is observed. If a
two or three π decay is observed, the lifetime is observed and thus “which width”
information of the object system is obtained; no interference is seen in the joint
events. Clearly, we have a completely passive erasing operation on the meter; the
experimenter has no control whether the lifetime mark is read out or not.

This experiment has no analog to any other considered two-level quantum
system.

3.4 Passive Eraser with “Passive” Measurements

Passive eraser with passive measurements (S: passive/passive; T: passive/passive)
Finally we mention the setup in Fig. 10, where both kaons evolve freely in space

and the experimenter observes passively their decay modes and times. The exper-
imenter has no control over individual pairs neither on which of the two comple-
mentary observables at each kaon is measured nor when it is measured. This setup
is totally symmetric, thus it is not clear which side plays the role of the meter and
strictly speaking we cannot consider this experiment as a quantum eraser.

Source

T TS S

Fig. 10 For this type of quantum eraser, it is not clear which side plays the meter/object role as it
is totally symmetric and involves only passive measurements. This clearly has no analog to photon
experiments

3.5 Conclusions

We have discussed the possibilities offered by neutral kaon states, such as those
copiously produced by φ-resonance decays at the DAΦNE machine, to investigate
two fundamental issues of quantum mechanics: quantitative Bohr’s complementar-
ity and quantum eraser phenomena. In both cases, the use of neutral kaons allows for
a clear conceptual simplification and to obtain the relevant formulae in a transparent
and non-controversial way.

A key point is that neutral kaon propagation through the KS and KL components
automatically parallels most of the effects of double slit devices. Thanks to this,
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Bohr’s complementarity principle can be quantitatively discussed in the most simple
and transparent way. Similarly, the relevant aspects of quantum marking and the
quantum eraser admit a more clear treatment with neutral kaons than with other
physical systems. This is particularly true when the eraser is operated in the ‘delayed
choice’ mode and contributes to clarify the eraser’s working principle. Moreover,
the possibility of performing passive measurements, a specific feature of neutral
kaons not shared by other systems, has been shown to open new options for the
quantum eraser. In short, we have seen that, once the appropriate neutral kaon states
are provided as in the DAΦNE machine, most of the additional requirements to
investigate fundamental aspects of quantum mechanics are automatically offered by
Nature for free.

The CPLEAR experiment [71] did only part of the job (active strangeness–
strange-ness measurements), but the KLOE 2 experiment could do the full program
(and concrete designs are already under investigations)!

4 Decoherence and Measures of Entanglement

Another approach to study quantum features in high-energy physics is to study sys-
tems as open quantum systems, i.e., systems which interact with their environment
(see, e.g., [37, 63, 64]). This turned out to be very fruitful, in particular when one
discusses entanglement of meson–antimeson systems. First, because within a good
developed theoretical framework one can develop different decoherence models
with different properties, and second, these models and hypotheses can be put to
test by experiments (and this is currently done/has been done). Here, any meson
system is appropriate, but currently only for K-mesons and B-mesons enough data
is available.

4.1 Short Introduction to Decoherence

The dynamics of closed quantum systems are covered by the Schrödinger equa-
tion. These are systems which do not suffer any unwanted interactions with the
outside world—generally termed environment or reservoir—and are consequently
described by unitary dynamics. However, in the real world it is often not possi-
ble to avoid interactions of the system of interest with other (classical or quan-
tum) systems; such systems are called open quantum systems. In the last years
the understanding of open quantum systems has enlarged impressively (see, e.g.,
Refs. [37, 63, 64]). The whole system S + E , where S is the quantum system
under investigation and E is the environment, is assumed to be closed and thus
the Schrödinger equation applies. Possible decoherence effects arise due to some
interactions of the system with its environment. Sources for “standard” decoher-
ence effects can be the experimental background or noise of the experimental setup.
“Nonstandard” decoherence effects may result from fundamental “modifications”
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of QM and may be traced back to the influence of quantum gravity [65]—quantum
fluctuations in the space-time structure on the Planck mass scale—or due to dynam-
ical state reductions [66, 67] and arise on a different energy scale. However, the
general formalism for open quantum systems, i.e., a master equation derived under
certain assumptions, allows to handle decoherence models without modeling the
environment explicitly. The main goal is to develop different decoherence scenarios
and put them to test experimentally.

The dynamics of an open system S is generally described by a map ρS −→
Λ[ρS] from the state space of the quantum system onto itself. The map has to satisfy
the semigroup law and has to be completely positive. Complete positivity means that
for a positive map Λ all extensions Λn = Λ ⊗ 1n defined on H ⊗ Cn for all n are
also positive. This is a very important mathematical requirement. Physically Λn can
be interpreted as an operation which acts locally on one subsystem and no action
is taken on the other part of the system. Up to now this mathematical requirement
has never been tested directly in experiments, though it is obviously a necessary
constraint for all physical situations consisting of combined systems.

4.2 Decoherence Models Which can be Tested with Data
from Accelerators

Before we develop a decoherence model in the open quantum formalism let us intro-
duce a phenomenological parameter ζ which goes back to an idea of Schrödinger [1]
and Furry [68] in the year 1935. It goes like follows.

Imagine that the source produces as an initial state the maximally entangled anti-
symmetric Bell state

|ψ−(t)〉 = 1

2
{|KS〉l ⊗ |KL〉r − |KL〉l ⊗ |KS〉r }

= {|BH 〉l ⊗ |BL〉r − |BL〉l ⊗ |BH 〉r }, (61)

where the first line describes kaons and the second line B-mesons (BH ,“heavy” mass
eigenstate; BL ,“light” mass eigenstate). Then, while the two mesons propagate in
different directions the wave function spontaneously factorize in 50% of the cases
into the product state

|KS〉l ⊗ |KL〉r ; |BH 〉l ⊗ |BL〉r , (62)

respectively, or in the other 50% of the cases into

|KL〉l ⊗ |KS〉r ; |BL〉l ⊗ |BH 〉r . (63)
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Do Experimental Data Rule Out Such Scenarios or Not?

To answer these questions let us extend the Schrödinger–Furry hypothesis by intro-
ducing an “effective” decoherence parameter by

Pwithout decoherence( f1tl, f2tr ) =
||〈 f1|l〈 f2|r 1√

2 DetS

{|k̃1(tl)〉l |k̃2(tr )〉r − |k̃2(tl)〉l |k̃1(tr )〉r
}||2

= 1

2 |DetS|2
{
|〈 f1|k̃1(tl)〉|2|〈 f2|k̃2(tr )〉|2 + |〈 f1|k̃2(tl)〉|2|〈 f2|k̃1(tr )〉|2

− 2Re
{〈 f1|k̃1(tl)〉∗〈 f2|k̃2(tr )〉∗〈 f1|k̃2(tl)〉〈 f2|k̃1(tr )〉}

}

−→ Pζk̃1 ,k̃2
( f1tl , f2tr ) =

||〈 f1|l〈 f2|r 1√
2 DetS

{|k̃1(tl)〉l |k̃2(tr )〉r − |k̃2(tl)〉l |k̃1(tr )〉r
}||2

= 1

2 |DetS|2
{
|〈 f1|k̃1(tl)〉|2|〈 f2|k̃2(tr )〉|2 + |〈 f1|k̃2(tl)〉|2|〈 f2|k̃1(tr )〉|2

− 2 (1− ζk̃1,k̃2
)︸ ︷︷ ︸

modification

Re
{〈 f1|k̃1(tl)〉∗〈 f2|k̃2(tr )〉∗〈 f1|k̃2(tl)〉〈 f2|k̃1(tr )〉}

}
,

(64)

where f1/2 are the final states measured in the experiment and k̃1/2 are, e.g., the mass
eigenstates of the kaons or the B-mesons, respectively.

Here, the quantum mechanical probability is changed by multiplying the inter-
ference term by 1−ζ . If ζ vanishes then we have a scenario without decoherence; if
ζ = 1 the interference term vanishes, this is clearly the Schrödinger–Furry hypoth-
esis. Thus ζ quantifies how good the quantum mechanical interference term is mea-
sured. This effective decoherence parameter—introduced by hand—interpolates
continuously between two limits and represents a measure for the amount of deco-
herence which results in a loss of entanglement of the initial state.

However, we can write down the initial state in any basis we want (QM is basis-
independent). Thus we could assume also a spontaneous factorization in a total
different basis, e.g., in 50% of the cases into |K 0〉l ⊗ |K̄ 0〉r or in the other 50%
of the cases into |K̄ 0〉l ⊗ |K 0〉r (the same for B-mesons). Clearly, this is a different
decoherence scenario and corresponds to a different ζ .

Using the experimental data of the CPLEAR experiment [71] in 1998 at Cern
gives (see Refs. [69, 70]):

ζKS KL = 0.13± 0.16 , (65)

ζK 0 K̄ 0 = 0.4± 0.7 . (66)
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Clearly, the Schrödinger–Furry hypothesis in KS, KL basis is ruled out; however,
the data does not exclude any decoherence. For the decoherence scenario assuming
the interaction of the system with the environment in the K 0 K̄ 0 basis both limits
are possible, i.e., no decoherence, but as well Schrödinger–Furry spontaneous fac-
torization of the wave function. Thus such a decoherence scenario cannot be ruled
out by this experimental data set.

Recently (July 2006), Antonio DiDomenico of the KLOE collaboration [72]
analyzed the data of the first observation of quantum interference in the process
Φ −→ KS KL −→ π+π−π+π−. They found for the decoherence parameter ζ

ζKS KL = 0.018± 0.040stat ± 0.007sys , (67)

ζK 0 K̄ 0 = 0.01± 0.21stat ± 0.04sys . (68)

These data represent a considerable improvement on those obtained from the
CPLEAR experiment above. The results in the K 0 K̄ 0 basis of the KLOE exper-
iments benefit from the measurement in the other basis, the large cancelations
between the interference term and the two terms that occur for the CP suppressed
final state π+π−. It tests another experimental situation.

A similar scenario was considered for B-mesons by Bertlmann and Grimus [73];
they found

ζBH BL = −0.06± 0.1 (69)

using the ARGUS and CLEO data where no time resolution was possible. Recently
Go for the KEK collaboration used the data of the BELLE detector in Japan and
found [74]

ζBH BL = 0.029± 0.057 . (70)

4.3 The Decoherence Model and its Connection to Measures
of Entanglement

Let us now discuss in detail how a decoherence scenario could look like (see also
Ref. [70]). We focus on kaons, since for B-mesons everything is analogous. We
start with the Lindblad equation, (51) and (52), where we renormalize to surviving
mesons for simplicity and choose the generators in the mass eigenstates, i.e.,

A1 =
√
λ |KS〉〈KS| ,

A2 =
√
λ |KL〉〈KL | , (71)

where λ is the strength of interaction with the environment. Solving the differen-
tial equations we find that this model is simply connected to the above discussed
scenario of a spontaneous factorization of the wave function in the mass eigenstate
basis, i.e.,
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e−λmin{tl ,tr } = 1− ζ (min{tl, tr }) . (72)

From the EPR-discussions we learn that as long as the two kaons are entangled,
they have to be considered as one system and one system has only one time. If one
meson is measured or decays, the other one is so to say “alone” and therefore does
not longer undergo the same decoherence as before. This is the reason why only the
time of the first measured kaon is of importance.

Currently, Gerald Richter of the High Energy Group in Vienna (HEPHY) is using
the data of the KEK accelerator for B-mesons to test this decoherence model. With
that he is also able to rule out other decoherence models.

Remarkably, for the model under discussion it turns out that the amount of deco-
herence is very simply connected to measures of entanglement, i.e., the loss of con-
currence 1 − C (for definition see page 168) and loss of entanglement of formation
1− E (for definition see page 167) is

1− C (ρ(t)) = ζ (t) = 1− e−λt

1− E (ρ(t)) � 1

ln 2
ζ (t) � λ

ln 2
t ,

where we expanded for small values of the decoherence parameter λ, or respectively
ζ (t). The strength of the interaction of the system with the environment λ or ζ (t)
are directly measurable in experiment. In this way the very basic mathematical and
theoretical concepts are directly confronted with experiments.

Acknowledgement I want to thank Marcus Huber for carefully reading the manuscript and for
many helpful comments.
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Five Lectures on Optical Quantum Computing

Pieter Kok

A quantum computer is a machine that can perform certain calculations much faster
than a classical computer by using the laws of quantum mechanics. Quantum com-
puters do not exist yet, because it is extremely difficult to control quantum mechan-
ical systems to the necessary degree. What is more, we do at this moment not know
which physical system is the best suited for making a quantum computer (although
we have some ideas). It is likely that a mature quantum information processing
technology will use (among others) light, because photons are ideal carriers for
quantum information. These notes are an expanded version of the five lectures I
gave on the possibility of making a quantum computer using light, at the Summer
School in Theoretical Physics in Durban, 14–24 January, 2007. There are quite a few
proposals using light for quantum computing, and I can highlight only a few here.
I will focus on photonic qubits, and leave out continuous variables completely.1 I
assume that the reader is familiar with basic quantum mechanics and introductory
quantum computing.

1 Light and Quantum Information

Simply put, a quantum computer works by storing information in physical carriers,
which then undergo a series of unitary (quantum) evolutions and measurements. The
information carrier is usually taken to be a qubit, a quantum system that consists of
two addressable quantum states. Furthermore, the qubit can be put in arbitrary super-
position states. The unitary evolutions on the qubits that make up the computation
can be decomposed in single-qubit operations and two-qubit operations. Both types
of operations or gates are necessary if the quantum computer is to outperform any
classical computer.

P. Kok (B)
Quantum and Nano-Technology Group, Department of Materials, Oxford University, Oxford, UK
e-mail: P.kok@sheffield.ac.uk

1 For a review on optical quantum computing with continuous variables, see Braunstein and Van
Loock, Rev. Mod. Phys. 77, 513 (2005).
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1.1 Photons as Qubits

We define the computational basis states of the qubit as some suitable set of states
|0〉 and |1〉. An arbitrary single-qubit operation can take the form of a compound
rotation parameterized by two angles θ and φ:

|0〉 → cos θ |0〉 + ieiφ sin θ |1〉,
|1〉 → ieiφ sin θ |0〉 + cos θ |1〉. (1)

This can be represented graphically in the Bloch or Poincaré sphere (see Fig. 1).
What type of light can be used as a qubit? The smallest excitation of the elec-

tromagnetic field is the photon. We cannot construct a standard wave function for
the photon, but we can identify the different degrees of freedom that we can use as
a qubit: a photon can have the choice between two spatially separated beams (or
modes), or it can have two distinct polarizations [1]. These two representations are
mathematically equivalent, as we will show below.

The emission and absorption of photons with momentum k is described mathe-
matically using creation and annihilation operators:

â(k)|n〉k =
√

n|n − 1〉k and â†(k)|n〉k =
√

n + 1|n + 1〉k . (2)

It is straightforward to show that n̂(k) ≡ â†(k)â(k) is the number operator n̂(k)|n〉k =
n|n〉k . The canonical commutation relations between â and â† are given by

[
â(k), â†(k ′)

] = δ(k − k ′),[
â(k), â(k ′)

] = [â†(k), â†(k ′)
] = 0 .

(3)

For the purposes of these notes, we use subscripts to distinguish the creation and
annihilation operators for different modes, rather than the functional dependence on
k. In photon language, we can define the logical qubit states on two spatial modes a
and b as:

Fig. 1 Graphic representation of the Bloch sphere
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|0〉L = â†|�〉 = |1, 0〉ab and

|1〉L = b̂†|�〉 = |0, 1〉ab, (4)

where |�〉 is the vacuum state and the 0 and 1 denote the photon numbers in the
respective modes. The polarization qubits are defined as

|0〉L = â†
H |�〉 = |H〉 and

|1〉L = â†
V |�〉 = |V 〉. (5)

Every state of the electromagnetic field can be written as a function of the creation
operators acting on the vacuum state |�〉. A change in the state can therefore also
be described by a change in the creation operators (essentially, this is the difference
between the Schrödinger and Heisenberg picture). In fact, it is often easier to work
out how a physical operation changes the creation and annihilation operators than
how it changes an arbitrary state. This is what we will do here. The single-qubit
operations on single photons in terms of the creation and annihilation operators
consist of the following transformations:

1. The phase shift changes the phase of the electromagnetic field in a given mode:

â†
out = eiφâ†

inâin â†
in e−iφâ†

inâin = eiφ â†
in , (6)

with the interaction Hamiltonian Hφ = φ â†
inâin (� = 1). Physically, the phase

shift can be implemented using a delay line or a transparent element with an
index of refraction that is different from free space, or the optical fibre (or what-
ever medium the photons propagate through). In (6) we used the operator identity

eαA Be−αA = B + α[A, B]+ α2

2!
[A, [A, B]]+ . . . , (7)

where A is Hermitian.
2. The beam splitter usually consists of a semi-reflective mirror: when light falls

on this mirror, part will be reflected and part will be transmitted. Let the two
incoming modes on either side of the beam splitter be denoted by âin and b̂in,
and the outgoing modes by âout and b̂out. When we parameterize the probability
amplitudes of these possibilities as cos θ and sin θ , and the relative phase as ϕ,
then the beam splitter yields an evolution in operator form

â†
out = cos θ â†

in + ie−iϕ sin θ b̂†
in ,

b̂†
out = ieiϕ sin θ â†

in + cos θ b̂†
in . (8)

In terms of the Hamiltonian evolution, we have

â†
out = eiHBS â†

in e−iHBS and b̂†
out = eiHBS b̂†

in e−iHBS , (9)
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where the “interaction Hamiltonian” HBS is given by

HBS = θeiϕ â†
inb̂in + θe−iϕ âinb̂†

in . (10)

Mathematically, the two parameters θ and ϕ represent the angles of a rotation
about two orthogonal axes in the Poincaré sphere. The physical beam splitter can
be described by any choice of θ and ϕ, where θ is a measure of the transmittivity
and ϕ gives the phase shift due to the coating of the mirror. An additional phase
shift may be necessary to describe the workings of the physical object correctly.

This demonstrates that the beam splitter and the phase shift suffice to implement any
single-qubit operation on a single photonic qubit. This case, where a single photon
can be in two optical modes, is commonly called the dual rail representation, as
opposed to the single rail representation where the qubit coincides with the occupa-
tion number of a single optical mode.

There are similar relations for transforming the polarization of a photon. Phys-
ically, the polarization is the spin degree of freedom of the photon. The photon
is a spin-1 particle, but because it travels at the speed of light c, the longitudinal
component is suppressed. We are left with two polarization states, which make an
excellent qubit. The two important operations on polarization are:

1. The polarization rotation is physically implemented by quarter- and half-wave
plates. We write âin → âx and b̂in → ây for some orthogonal set of coordinates
x and y (i.e. 〈x |y〉 = 0). The parameters θ and ϕ are now angles of rotation:

â†
x ′ = cos θ â†

x + ie−iϕ sin θ â†
y ,

â†
y′ = ieiϕ sin θ â†

x + cos θ â†
y . (11)

This evolution has the same Hamiltonian as the beam splitter, and it formalizes
the equivalence between polarization and two-mode logic.

2. The polarizing beam splitter (PBS) spatially separates modes with orthogonal
polarization. If the PBS is cut to separate horizontal and vertical polarization, the
transformation of the incoming modes (ain and bin) yields the following outgoing
modes (aout and bout):

âin,H → âout,H and âin,V → b̂out,V

b̂in,H → b̂out,H and b̂in,V → âout,V . (12)

Using quarter-wave plates and polarizers, we can also construct a PBS for differ-
ent polarization directions (e.g. L and R), in which case we make the substitution
H ↔ L , V ↔ R.



Optical Quantum Computing 191

1.2 Interferometers

When there are many optical modes a1 to aN , we need a compact description if we
are to apply beam splitters, phase shifters and such to these optical modes. Equations
(8) and (11) can be written as a vector equation:

(
â†

out

b̂†
out

)
=
(

cos θ ie−iϕ sin θ

ieiϕ sin θ cos θ

)(
â†

in

b̂†
in

)
. (13)

In general, when we have many optical modes we can collect their corresponding
operators in a vector, and if U is a unitary matrix, the multi-mode transformations
become

â†out = U â†in or â†
j,out =

∑
k

U jk â†
k,in , (14)

where âout ≡ (â1, . . . , âN ). A successive application of beam splitters and phase
shifters is therefore equivalent to a series of unitary matrices associated with these
elements. It turns out that any N × N unitary matrix can be decomposed in terms
of 2 × 2 unitary matrices Tjk of the form2 in Eq. (13) [2]. Therefore, any arbi-
trary interferometer (in which N optical modes interfere with each other) can be
constructed from beam splitters, phase shifts, and polarization rotations. This is an
extraordinarily powerful result, and we can use it to define a general interferometer
as a unitary transformation U on N (spatial) modes, or an N -port.

We should note one very important thing, though: just because we can decom-
pose U into a series of “single-qubit” operations defined above, it does not mean we
can call this a quantum computer. Qubits should be well-defined physical systems
that you can track through the computation. However, in an interferometer with n
input photons it is possible (and inevitable) that some of them will end up in the
same mode. Since photons are indistinguishable particles (or at least they should be
in this model), we cannot track the quantum information they carry. Also, we still
have not shown how to make two-qubit gates. This means that we have to work a
bit harder to show we can make a quantum computer in this way.

Exercise 1. Prove the relations in (6) and (8).

Exercise 2. Show how to turn a qubit on two spatial modes into a polarization qubit.

Exercise 3. Write down the interaction Hamiltonian and unitary matrix for a mirror.

2 To be precise, the N × N matrix is decomposed in terms of Tjk ⊗ IN−2, where IN−2 is the
(N − 2)× (N − 2) identity matrix.
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2 Two-Qubit Gates and the KLM Scheme

While single-qubit operations on a photon are easy, two-qubit operations on two
photons are very difficult. Consider the two-qubit gate that generates the following
transformation:

|H, H〉ab → 1√
2

(|H, H〉cd + |V, V 〉cd ) . (15)

This is a perfectly sound quantum mechanical operation, and one that is often
needed in a quantum computation. Let us see how we can implement this with
photons and linear optical elements. In terms of the creation operators acting on
the vacuum |�〉, this transformation can be written as

â†
H b̂†

H |�〉 → 1√
2

(
ĉ†H d̂†

H + ĉ†V d̂†
V

)
|�〉 . (16)

Let us substitute the operator transformations for â†
H and b̂†

H :

â†
H b̂†

H =
⎛
⎝∑

j

U j1ĉ†j

⎞
⎠
(∑

k

Uk2d̂†
k

)
=
∑

jk

U j1Uk2ĉ†k d̂†
j . (17)

By construction, this is a separable expression. However, the state we wish to create
is entangled (inseparable)! So we can never get an entangling (two-qubit) gate this
way. Therefore we arrive at the conclusion that single-photon inputs, N -ports and
final read-out are not sufficient to make a quantum computer!

2.1 The KLM Approach

Clearly, we have to add something more. What about feed-forward? By making
a measurement on part of the output of the N -port we may be able to reject or
accept certain terms in a superposition, and effectively gain entanglement. This is
the approach championed in the now famous “KLM” paper [3], after the authors
Knill, Laflamme, and Milburn. First, they construct an N -port with suitable input
states, which upon the correct detection signature gives a two-qubit gate. Since the
detection is a true quantum mechanical process, the outcome is unknown before-
hand, and the gate succeeds only a fraction of the time. The gate destroys the qubits
(and hence the quantum information) when it fails. If this gate was used directly in
a computation, the overall success probability of the computation would decrease
exponentially with the number of two-qubit gates, so something else is needed.

Second, KLM show how a probabilistic optical gate can be applied to two qubits
without destroying them. This relies on a method developed by Gottesman and
Chuang, called the teleportation trick, and it allows us to use a previously created
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entangled state to teleport gates into the quantum circuit [4]. I will describe this
procedure in a different form later in these lecture notes. Before that, let us look at
quantum gates in a bit more detail.

Three special single-qubit gates are the Pauli operators. In matrix notation (in the
computational basis) these look like

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (18)

The X operator is a bit flip, and the Z operator is a phase flip. The Y operator is
a combination of X and Z . Two very useful two-qubit gates are the controlled-Z ,
where a Z operation is applied to the second qubit if the first qubit is in state |1〉,
and the controlled-NOT, where an X operation (a bit flip) is applied to the second
qubit depending on the first. In matrix notation, these gates look like

UCZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ and UCNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (19)

These two entangling gates have a very special property: when we apply these
transformations to a tensor product of two Pauli matrices we get again two Pauli
matrices:

U †
CZ (P1 ⊗ P2)UCZ = P3 ⊗ P4 , (20)

and similarly for the CNOT gate. Operators with this property (of turning Pauli
operators into Pauli operators) are members of the Clifford group. This is a very
important symmetry in quantum information theory, as it forms the basis of quantum
error correction.

Suppose we wish to apply the CZ gate to two qubits |φ1〉 and |φ2〉 (see Fig. 2).
We can teleport these states to new qubit systems and then apply the CZ gate to
the teleported qubits. This in itself achieves not much, but we can now commute
the CZ gate through the corrective single-qubit Pauli gates to make the CZ part of
the entanglement channel in teleportation. The fact that the CZ operation is part of
the Clifford group now comes in handy: the commutation operation will not induce
any new two-qubit gates.

Knill, Laflamme, and Milburn [3] used this trick to create two-qubit gates for
single-photon qubits. The complication here was that the Bell measurement essen-
tial to teleportation cannot be carried out deterministically on single photons. To
this end, KLM designed a teleportation protocol that uses 2n additional photons and
succeeds with a success probability n/(n + 1). Since we require two teleportation
events, the success probability of the two-qubit gate is [n/(n + 1)]2. Failure of the
gate amounts to a measurement in the computational basis, which is easy to protect
against with standard error correction (i.e. parity codes).
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Fig. 2 The teleportation trick. The CZ operation is denoted by a vertical line, which connects
to the two qubits with a solid dot. We teleport both qubits |φ1〉 and |φ2〉 (B denotes the Bell
measurement), and apply the CZ to the output qubits. Then we commute the CZ from the right to
the left, through the corrective Pauli operations of the teleportation. The CZ operation can then be
performed off-line, together with the preparation of the entanglement channel for teleportation (the
shaded box)

This may all seem a bit overwhelming, and the reader will be pleased to hear that
several simplifications of this scheme have been proposed. In the next part of this
lecture I will describe two very simple optical operations that can be used to create
all the entanglement we need.

2.2 Two-Photon Interference

Quantum computing with photons and linear optical elements relies critically on
two-photon interference, with or without polarization. In this section, I will first
describe the quintessential two-photon Hong-Ou-Mandel effect. After that, I will
extend it to the case of polarized photons.

The Hong-Ou-Mandel (HOM) effect [5] occurs when two identical photons (the
same polarization, the same frequency, and the same spatio-temporal profile) each
enter an input port of a 50:50 beam splitter (see Fig. 3). Mathematically, this can be
condensed to the following: since the photons are identical, we can suppress all the
spatio-temporal, frequency, and polarization information in the creation operator,

Fig. 3 The four amplitudes in the two-photon interference experiment by Hong, Ou, and Mandel.
Components (b) and (c) always have opposite sign by virtue of unitarity of the beam splitter, and
cancel
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and write the input state as |1, 1〉ab = â†b̂†|�〉 on the two input modes a and b. The
50:50 beam splitter is characterized by the transformation

â → ĉ + d̂√
2

and b̂→ ĉ − d̂√
2

. (21)

Classically, when the photons enter the beam splitter, each will independently
choose whether it will exit in mode c or d. As a result, we expect the photons half of
the time to come out in the same output (both in c or both in d), and half of the time
they should come out in different output modes (one in mode c and one in mode d).
However, quantum mechanically we get something different.

When we substitute the beam splitter transformation rules into the input state
|1, 1〉ab, we obtain

|1, 1〉ab = â†b̂†|�〉 → 1

2

(
ĉ† + d̂†) (ĉ† − d̂†) |�〉 = 1

2

(
ĉ†2 − d̂†2

) |�〉

= |2, 0〉cd − |0, 2〉cd√
2

. (22)

We see that the |1, 1〉cd term in the output modes of the beam splitter is suppressed.
This is the HOM effect, and the absence of coincidence counts in such an interfer-
ence experiment is called the HOM dip. When the input photons are distinguishable
(for example if they have different frequencies, or if they arrive at different times
at the beam splitter), the dip disappears, and we see the |1, 1〉cd component in the
superposition: the photons behave as classical particles. It is therefore extremely
important in such experiments that the photons are truly indistinguishable. This is
one of the hardest requirements to meet in linear optical quantum computing.

Another way to see how the HOM effect works is to write down all the different
possibilities in which the photons can travel through the beam splitter (see Fig. 3).
The output state of (b) and (c) are indistinguishable, so we do not know whether both
photons were transmitted or reflected. Moreover, the beam splitter does not retain
a memory how the photons interacted at its surface. Therefore, we have to sum the
two possibilities coherently. Unitarity of the beam splitter ensures that the relative
phase is−1, and the two processes cancel. We can run this experiment backwards as
well, because a unitary evolution is reversible. The sources then become detectors,
and vice versa. It is then easy to see that a coincidence count after a 50:50 beam
splitter projects onto the state |2, 0〉 − |0, 2〉 of the input modes.

The HOM effect is the corner stone of KLM-type optical quantum computing.
When the qubit is a dual-rail single photon, every two-qubit gate is based on this
effect. However, it may be sometimes more convenient to use polarization qubits.
Can we construct a similar two-qubit interferometer? The answer is yes: assume that
we have two photons impinging on a polarizing beam splitter. In Fig. 4 you can see
that the action of this device looks very similar, except that there is no cancellation.
When we erase polarization information in the output modes by 45◦ rotations and



196 P. Kok

h h

h

v

vv

v

h

Fig. 4 The effect of a polarizing beam splitter on two input photons. The letters v and h denote
vertical and horizontal polarization, respectively

perform single-photon detection, we can construct so-called fusion gates. These turn
out to be extremely useful for optical quantum computing.

There are two types of fusion gates, aptly named type I and type II [6]. In type
I, only one of the output ports is detected, while in type II both output ports are
detected. Because of this detection, if we want to create entanglement we cannot
start with single photons. The basic building block that is to be used with fusion
gates is a Bell state, e.g. |H, V 〉 + |V, H〉. It is not easy to make these states on
demand, but there are quite a few experimental efforts underway to create them
with micro-pillar structures. I will first describe the precise workings of both fusion
gates, and then I will show how they can be used to make large sets of entangled
qubits.

The type-I fusion gate is a polarizing beam splitter cut for horizontal and vertical
polarization, and one of the output modes (say, d) has a 45◦ polarization rotation,
followed by photo-detection in the {H, V } basis. Let us assume that the input modes
a and b are entangled with some other modes, such that the most general input
state can be written as ( f1â†

H + f2â†
V )( f3b̂†

H + f4b̂†
V )|�〉. Here, the fk are arbi-

trary functions of creation operators on other optical modes. When we substitute
the transformation of the polarizing beam splitter and the polarization rotation, we
obtain the following operator:

f1 f3√
2

ĉ†H

(
d̂†

H + d̂†
V

)
+ f1 f4ĉ†H ĉ†V +

f2 f3

2

(
d̂†2

H − d̂†2
V

)
+ f2 f4√

2
ĉ†V

(
d̂†

H − d̂†
V

)
.

After post-selecting the output state of all the modes (including the support of the
fk) on the detector outcome (dH , dV ), we have

(0, 0) : |ψout〉 = f1 f2ĉ†H ĉ†V |�〉
(2, 0) or (0, 2) : |ψout〉 = f2 f3

2
|�〉

(1, 0) : |ψout〉 = 1√
2

(
f1 f3ĉ†H + f2 f4ĉ†V

)
|�〉

(0, 1) : |ψout〉 = 1√
2

(
f1 f3ĉ†H − f2 f4ĉ†V

)
|�〉 . (23)
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Fig. 5 Two types of fusion operators. (a) The type-I fusion operator employs a polarization beam
splitter (PBS1) followed by the detection D of a single output mode in the 45◦ rotated polarization
basis. This operation determines the parity of the input mode with probability 1/2. (b) The type-II
fusion operator uses a diagonal polarization beam splitter (PBS2), detects both output modes, and
projects the input state onto a maximally entangled Bell state with probability 1/2

In the case where we find a single photon in mode d (vertical or horizontal), it is
easy to see that we create entanglement. In particular (and with abusive notation),
suppose that f1 = â†

H , f2 = â†
V , f3 = b̂†

H , and f4 = b̂†
V . The arrival of a horizontal

photon in mode d then signals the output state (â†
H b̂†

H ĉ†H + â†
V b̂†

V ĉ†V )|�〉, that is, a
three-photon GHZ state.

The type-II fusion operator in Fig. 5b works in a very similar way to the type-I
fusion gate, except now the polarizing beam splitter is cut to diagonal polarization
|H〉 ± |V 〉, and both output ports are detected in the {H, V } basis. When we again
substitute the transformation of the polarizing beam splitter and the polarization
rotation, we obtain the operator

( f1 + f2)( f3 − f4)
(

ĉ†2
H − ĉ†2

V

)
+ ( f1 − f2)( f3 + f4)

(
d̂†2

H − d̂†2
V

)

+ 2( f1 f3 + f2 f4)ĉ†H d̂†
H + 2( f1 f4 + f2 f3)ĉ†H d̂†

V + 2( f1 f4 + f2 f3)ĉ†V d̂†
H

+ 2( f1 f3 + f2 f4)ĉ†V d̂†
V .

Depending on the photon detection signature (c, d), we have the output state

(2H, 0) or (2V, 0) : |ψout〉 = ( f1 + f2)( f3 − f4)|�〉
(0, 2H ) or (0, 2V ) : |ψout〉 = ( f1 − f2)( f3 + f4)|�〉
(H, H ) or (V, V ) : |ψout〉 = ( f1 f3 + f2 f4)|�〉
(H, V ) or (V, H ) : |ψout〉 = ( f1 f4 + f2 f3)|�〉 . (24)

Clearly, when we find one photon in each output port, the type-II fusion gate is an
entangling gate. It can be interpreted as a parity measurement as follows: suppose
that the functions fk are not operators, but quantum state amplitudes of the two input
modes a and b instead. The input state is then given by f1 f3|H, H〉+ f2 f4|V, V 〉+
f1 f4|H, V 〉 + f2 f3|V, H〉. Clearly, finding two photons with the same polarization
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in the output modes will project onto the even parity component of the input state,
which finding two photons with different polarization will project onto the odd par-
ity component.

The fusion gates are not your regular two-qubit gates, because you can not put
a separable state in and get an entangled state out. In fact, there is no output in
the type-II fusion gate at all. So how can we do quantum computing with this?
The answer was given by Browne and Rudolph [6], and it involves a whole new
approach to quantum computing. It is known as the “one-way model” of quantum
computing, “cluster state quantum computing”, of the more generic “measurement-
based quantum computing”. I will discuss the basic principles of this approach in
the next section.

Exercise 4. Can you make any entanglement with single photons and N -ports?

Exercise 5. Show that the Hadamard, CZ and CNOT operators are members of the
Clifford group.

Exercise 6. Calculate the success probability of the type-I fusion gate.

Exercise 7. Verify the relations (23) and (24). Convince yourself that the type-II
fusion gate is a parity projection.

3 Cluster States

Cluster states were introduced by Raussendorf and Briegel [7], and form an alter-
native approach to quantum computing. The heart of this architecture is to create
a large entangled state as a resource. The computation then proceeds as a series of
(parallel) single-qubit measurements. Since all the entanglement is produced “off-
line”, this is a particularly powerful approach for single-photon quantum computing.

3.1 From Circuits to Clusters

Before we introduce cluster states, we must cast arbitrary single-qubit rotations into
arbitrary rotations around the Z axis and Hadamard operations H . Using H 2 = I
and X = H Z H , any arbitrary rotation θ can be decomposed into three Euler angles
α, β, and γ :

R(θ ) = Z (γ )X (β)Z (α) = H H Z (γ ) H Z (β) H Z (α) , (25)

where Z (α) ≡ exp(iαZ/2) and X (β) ≡ exp(iβX/2). In circuit language, this
becomes

HZ (α) HZ (β) HZ (γ) H
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and I will now show how H Z (α) can be implemented via a single-qubit measure-
ment.

Consider the following circuit diagram of single-qubit teleportation:

The measurement is in the computational basis, and the outcome “m” takes the value
0 or 1. Depending on this value, we apply a Pauli Z operation to the teleported qubit.

The next step is to translate the CNOT gate into the CZ gate. This procedure incurs
two Hadamard gates, which are absorbed into the state of the ancilla (|0〉 → |+〉)
and the teleported qubit.

A single-qubit rotation around the Z axis to the input qubit |ψ〉 can be
written as:

The rotation around the z-axis commutes with the CZ operation (they are both diag-
onal in the computational basis), and we can write:

We can reinterpret this diagram as an entangled state |Ψ 〉 = C Z |ψ,+〉, followed
by a single-qubit measurement on the first qubit that performs the single-qubit gate
H Z (α) on the state |ψ〉. The precise measurement basis A(α) is determined by

〈ψ |Z (−α)H Z H Z (α)|ψ〉 = 〈ψ |Z (−α)X Z (α)|ψ〉 = 〈ψ |A(α)|ψ〉 . (26)

This corresponds to a measurement along an axis in the equatorial plane of the Bloch
sphere.

In order to implement an arbitrary rotation R(θ), this procedure must be concate-
nated three times
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with |ψout〉 = (Xm H Z (γ )) (Xl H Z (β)) (Xk H Z (α)) |ψ〉. However, the operators Xk ,
Xl and Xm depend on the measurement outcomes, and we should try to get rid of
them by commuting them through the Pauli gates and Hadamards. We can again use
the relations Z X = −X Z to show that

Z (β)X =
∞∑

n=0

(
iβ

2

)n Zn

n!
X =

∞∑
n=0

(−iβ

2

)n X Zn

n!
= X Z (−β) . (27)

This therefore gives rise to an adjustment of the measurement bases depending on
the previous measurement outcomes, and it results in a definite temporal direction in
the computation (see Exercise 8 at the end of this lecture). Hence the name “one-way
model” of quantum computing. (Remember that all the elements in the traditional
circuit model are unitary operators, and therefore reversible.)

3.2 Universal Cluster States

Now that we have constructed arbitrary single-qubit operations, we do not need to
start our circuit with the input state |ψ〉, but we can start with another |+〉 state and
implement the first single-qubit rotation to obtain the required input state |ψ〉. We
can then write the evolution of a single qubit graphically as a string of ancilla qubits
in state |+〉 (circles), connected via CZ operations (edges): multi-qubit evolution is

then represented as a collection of such strings. The strings can be bridged vertically
by edges, which in turn induce two-qubit operations: when all the nearest-neighbour
connections are established and the qubits form an entangled grid, any quantum
circuit can be realized if the cluster state is large enough. Such a state is called a
universal cluster state.

To show that a vertical bridge induces a CZ gate, consider the following sequence
of measurements and entangling operations: we start with two rows of three qubits
without any entanglement (a). The two rows will form the two qubits we wish to
apply the CZ gate to. We then entangle qubit 1 with qubit 2 in each row (b) and
measure qubits 1 (c). After the first two measurements, the states of qubits 1 are
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transferred to qubits 2. We can then apply the CZ gate to the two qubits, as well as
the two CZ gates that connect qubits 2 with qubits 3 (d). Finally, we measure qubits
2 and transfer the quantum information to the output qubits 3 (e). The point here is
that we can apply the CZ gate as if we are using it in the circuit model. However,
because the measurements and the CZ operations in this sequence commute, we
could have created all the entanglement at the start. Hence the vertical CZ gates are
suitable as two-qubit gates in cluster state quantum computing.

An often heard objection to cluster state quantum computing is that it seems to be
very wasteful with entanglement. Instead of having to create entanglement for every
two-qubit gate in an N -qubit computation, we seem to need at least N entangling
operations for every clock cycle! However, this is far too pessimistic. There is an
enormous redundancy in a cluster state that is translated straight from the circuit
model, as we did above. First of all, we can perform all single-qubit operations
in the Clifford group before the computation starts: these operations also corre-
spond to measurements, but their outcome does not affect any subsequent choice
of measurement basis and can therefore be carried out at any stage. Also, these
measurements will turn cluster states into smaller cluster states. As a result, we can
calculate the effect of most Clifford operations and create a minimal cluster state that
is in fact much smaller than what we found in the translation from the circuit model.
Since most of the error correction in the quantum computation involves Clifford
operations, this is a huge saving. Second, we do not have to create the complete
cluster state for the computation all at once. We can create a cluster with a relatively
shallow depth, and keep adding qubits to the right as we measure qubits on the left.
That way, we make our cluster “just in time”. The fusion gates can be used to create
these cluster states with a moderate overhead per qubit, as I will show in the next
section.

3.3 Making Cluster States with Fusion Gates

In order to show that we can make cluster states with fusion gates we need two
things. First, I will give a slightly unconventional description of the CZ gate, which
allows us to give a formal description of a cluster state. Second, I will rewrite the
action of the fusion gate in bracket notation.
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A cluster state is a collection of qubits initially in the |+〉 state, with CZ opera-
tions applied to a set of qubit pairs. Remember that the CZ gate is defined as a Z
operation on the target3 qubit if the state of the control qubit is |1〉. We can write
this as

UCZ |+, ψ〉12 = |0〉1|ψ〉2 + |1〉1 (Z2|ψ〉2) , (28)

where we ignored the overall normalization factor 1/
√

2. We can do this, because
all the terms have the same absolute value of the amplitude, and we are interested
only in the relative phases. Now let us see what happens when there are multiple
qubits in the cluster state. Qubit 1 may then have edges with multiple qubits:

UCZ |+, ψ〉1..N = |0〉1|ψ〉2..N + |1〉1
(
Z j1 . . . Z jk |ψ〉2..N

)
, (29)

where Z j is the Pauli Z operator on qubit j , and UC Z is a series of CZ gates on qubit
1 and its neighbours. To be accurate, we should write this as

UCZ |+, ψ〉1..N = |0〉1|ψ〉2..N + |1〉1
∏

j∈n(1)

Z j |ψ〉2..N . (30)

Here, we defined Z j = I2 ⊗ . . . Z j ⊗ I j+1 . . .⊗ IN , and the neighbourhood n(1) is
the set of qubits that are connected to qubit 1 via a CZ operation. Now suppose that
we have two separate cluster states that we wish to fuse into one. We can write the
separate states as

⎛
⎝|0〉1|ψ〉a + |1〉1

∏
j∈n(1)

Z j |ψ〉a
⎞
⎠⊗

⎛
⎝|0〉2|φ〉b + |1〉2

∏
j∈n(2)

Z j |φ〉b
⎞
⎠ . (31)

So qubits 1 and 2 are connected to two different cluster states |ψ〉 and |φ〉 on qubit
sets a and b, respectively. The neighbourhoods n(1) and n(2) have their support in
these respective qubit sets.

We want to apply the type-I fusion gate to qubits 1 and 2, but before we can do
this, we should write the action of the fusion gate in a more convenient form. From
the last two lines of (23) we see that a single photon in either dH or dV heralds
success, so let us assume we detect one photon in dH . How does that transform the
input to the output? In the discussion leading up to (23) we assumed that the state
was given by

(
f1 f3 â†

H b̂†
H + f1 f4 â†

H b̂†
V + f2 f3 â†

V b̂†
H + f2 f4 â†

V b̂†
V

)
|�〉. (32)

3 It so happens that the CZ gate is symmetric, so it does not really matter which qubit you call the
control and which the target.
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The fusion gate turns this into

(
f1 f3 ĉ†H + f2 f4 ĉ†V

)
|�〉, (33)

and we can therefore deduce that only the |H, H〉 and |V, V 〉 components survive.
Moreover, the operator ĉ†j creates a photon with the same polarization as the ones
that have just been detected: this can be written in bracket notation as

U (H )
type I = |H〉〈H, H | + |V 〉〈V, V | . (34)

A similar expression can be deduced for the case where a vertically polarized photon
is detected.

To show that the type-I fusion gate can connect two cluster states, let us write
Utype I in the computational basis: U (0)

type I = |0〉3 12〈0, 0| + |1〉3 12〈1, 1|. The fusion
gate is now applied to qubits 1 and 2 in Eq. (31). This gives

|ψout〉 = |0〉3|ψ, φ〉ab + |1〉3
∏

j∈n(1)

∏
k∈n(2)

Z jZk |ψ, φ〉ab

≡ |0〉3|Ψ 〉c + |1〉3
∏

l∈n(1)∪n(2)

Zl |Ψ 〉c, (35)

where we defined |ψ, φ〉 ≡ |Ψ 〉 and c is the union of the two qubit sets a and b.
Note that (35) is again of the form in (30), and is therefore another cluster state. If
we had found measurement outcome 1 in the fusion gate, the same cluster state is
created, up to a local Z operation. This shows that we can use type-I fusion gates to
create cluster states. The same is true for type-II gates.

Of course, the fusion gates are probabilistic, and half of the time the gate fails.
It turns out that the type-II gate is better behaved than the type-I when it fails, and
we should therefore aim to create the cluster states with type-II gates. However, we
cannot just take the cluster state we want to expand and a single Bell state and apply
the type-II fusion, because in every successful gate we necessarily lose two photons
through detection. We therefore need the type-I gate to create larger (but still small)
cluster states, and use the type-II gate to add these to the cluster. How large should
the mini-clusters be?

Suppose we have a (linear) cluster of size N , and we want to add a mini-cluster
of size m. The success probability of the fusion gate is p, and upon failure we need
to detect one extra qubit to return the large multi-qubit state to a cluster state. In
order for the cluster to grow we need to obey the following bound:

p(N + m − 2)+ (1− p)(N − 2) > N or m >
2

p
. (36)

Therefore, even if the success probability is very small (for instance because of
detection inefficiencies), we can still choose the size of our mini-clusters m such
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that we can efficiently grow large cluster states. However, the larger m is, the more
the average cost of adding a qubit to the cluster, so we want p to be reasonably large.

Exercise 8. Show that the effective single-qubit operation corresponds to

HZ(α) HZ((−1)kβ) HZ((−1)lγ) Xk Zl Xm

Note that every measurement depends at most on the previous measurement out-
come. How do the final three Pauli’s affect the computation?

Exercise 9. Find the action of the type-I fusion operator conditioned on detecting a
vertically polarized photon.

4 Quantum Computing with Matter Qubits and Photons

At this point we have pretty much all the ingredients that we need for linear optical
quantum computing. One important component is still missing, however. Because
we rely on post-selection and feed-forward in this quantum computer architecture,
we need the ability to store the qubits (the single photons) from the time they are
first entangled with the cluster state, to the time they are detected. This means we
need an optical quantum memory.

4.1 Qubit Memories

Loosely speaking, let the fault-tolerant threshold be the maximum error beyond
which no error correction can save the quantum computation. A quantum memory
for linear optical quantum computing with single photons must then meet the fol-
lowing strict requirements:

1. The photon must couple into the memory with high enough probability to surpass
the fault-tolerant threshold.

2. The photon must couple out of the memory with high enough probability to
surpass the fault-tolerant threshold.

3. The mode shape of the output photon must be identical to that of the input photon
in order to facilitate high-fidelity interferometry.

Moreover, the memory errors are cumulative, so if all three errors above are just
below the fault-tolerant threshold, the total error will surely be above the threshold.

A typical quantum memory used in experiments is a fibre-optical delay line.
However, due to losses in the fibre this is not a scalable solution (in a full-scale quan-
tum computer, the memory time is likely to be several clock cycles long). Therefore,
for optical quantum computing with single photons to become a viable technology,
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we need some other system that can store the qubit value of the photon. Possibilities
are atomic vapours, or systems with optical transitions strongly coupled to a cavity.

However, now we have just lost the advantage of the single photon as our qubit,
namely its robustness against decoherence: the decoherence will now take place in
the quantum memory. This means that we still have to create very robust matter
qubits. So rather than trying to couple photons into the memory, we can engineer
the capability of single-qubit operations into the memory and use the memories
themselves as matter qubits. This removes requirement 1 above. In the next section,
I will show that we can also remove requirement 2.

4.2 The Double-Heralding Protocol

Since it seems that we need some matter system as a quantum memory for opti-
cal quantum computing, we will explore this avenue further and start out with the
assumption that the memory is actually our qubit. The qubit can generate a photon
depending on its state, and if we can apply fusion-style gates on two such photons,
we may be able to create cluster states in matter qubits. Let us consider a matter
system with two energy levels |↑〉 and |↓〉 that make up the qubit states. An excited
level |e〉 in the system couples only to the |↑〉 level via an optical transition [8].

We entangle two qubits by first preparing two of these systems in separate cavi-
ties in the separable (unnormalised) state (|↓〉 + |↑〉)(|↓〉 + |↑〉). Subsequently, we
apply an optical π -pulse to each system, and wait for a single photon to be emitted.
This yields the total state

|↓↓〉|0, 0〉 + |↓↑〉|0, 1〉 + |↑↓〉|1, 0〉 + |↑↑〉|1, 1〉 ,

Fig. 6 Schematic of the double-heralding procedure. The two qubits are in separate physical sys-
tems and interact solely through their emitted photons. Path erasure of the photons generates the
entanglement between the qubits
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where |0〉 and |1〉 now denote the vacuum and a single photon in the freely propa-
gating optical mode leaving the cavity, respectively (Fig. 6). When these two modes
interact on a 50:50 beam splitter, the total state becomes (note the HOM effect)

|↓↓〉|0, 0〉+ 1√
2

[
(|↓↑〉+ |↑↓〉)|0, 1〉+ (|↓↑〉− |↑↓〉|1, 0〉+ |↑↑〉(|2, 0〉+ |0, 2〉)

]
.

Detecting both the outgoing modes of the beam splitter, each with a realistic detector
(i.e. a detector with finite efficiency, and which cannot discriminate between optical
states with one or more photons), gives the following state of the qubits (given just
a single detector click in D±):

ρ(±) = f (η)|Ψ (±)〉〈Ψ (±)| + [1− f (η)]|↑↑〉〈↑↑| , (37)

where |Ψ (±)〉 = (|↓↑〉 ± |↑↓〉)/√2 and f (η) ≤ 1 is a function of the combined
collection and detection efficiency, η.

The state in (37) is an incoherent mixture of a maximally entangled state and
the separable state |↑↑〉〈↑↑|. However, we can remove this separable part by first
applying a bit flip operation |↓〉 ↔ |↑〉 to both matter qubits. We subsequently
apply a second π -pulse to each matter system. The separable part cannot generate
photons. Thus, conditional on observing another single detector click, we obtain the
final two-qubit pure state:

|Ψ (±)〉 = 1√
2

(|↓↑〉 ± |↑↓〉) . (38)

The total success probability of this procedure is η2/2. Note that we have removed
requirement 1 of the quantum memory since we do not couple photons into the mat-
ter system, and we alleviated requirement 2 of quantum memories by allowing for a
reduced success probability of the entangling operation. The remaining challenge is
to make indistinguishable the photons originating from different qubits. Recently, a
group in Paris managed to control two atoms in optical tweezers sufficiently well so
that the photons they emit are indistinguishable enough to show two-photon quan-
tum interference [9].

4.3 Creating Cluster States with Double-Heralding

The double-heralding entangling procedure described above is very similar to the
type-II fusion gate, in that it effectively performs a projective parity measurement.
Double heralding can therefore be used to create cluster states for universal quantum
computing. Let us see how it works in detail.

We again use the formalism used in Lecture 3, where we write out the cluster
state in terms of the conditional Z operations. It is straightforward to show that the
action of the double-heralding procedure is given by
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E+ = |01〉〈01| + |10〉〈10| and E− = |01〉〈01| − |10〉〈10| , (39)

where we have identified |↑〉 with |0〉 and |↓〉 with |1〉, and the labels + and – of the
operator E denote the detection signature. Suppose we have two cluster states that
we wish to join using the double-heralding procedure. Before they are connected,
their state can again be written as

⎛
⎝|0〉1|ψ〉a + |1〉1

∏
j∈n(1)

Z j |ψ〉a
⎞
⎠⊗

⎛
⎝|0〉2|φ〉b + |1〉2

∏
j∈n(2)

Z j |φ〉b
⎞
⎠ , (40)

with the qubit neighbourhoods n( j) defined as before. Applying the operator E+
(i.e. a successful entangling operation) then yields the state

|0〉1|1〉2|ψ〉a
⎛
⎝ ∏

j∈n(2)

Z j |φ〉b
⎞
⎠+ |1〉1|0〉2

⎛
⎝ ∏

j∈n(1)

Z j |ψ〉a
⎞
⎠ |φ〉b . (41)

We need to show that this is again locally equivalent to a cluster state. To this
end, apply a Hadamard operation H2 to qubit 2 and a bit flip X1 to qubit 1. Since
both operators are part of the Clifford group, this will not destroy the cluster state:

|C〉 = |00〉12

⎛
⎝ ∏

j∈n(1)

Z j |ψ〉a
⎞
⎠ |φ〉b + |01〉12

⎛
⎝ ∏

j∈n(1)

Z j |ψ〉a
⎞
⎠ |φ〉b

+|10〉12|ψ〉a
⎛
⎝ ∏

j∈n(2)

Z j |φ〉b
⎞
⎠− |11〉12|ψ〉a

⎛
⎝ ∏

j∈n(2)

Z j |φ〉b
⎞
⎠ . (42)

The question is: Is this another cluster state? In order to show that this is indeed the
case, it is sufficient to show that we can transform it into a known form of a cluster
state using local Clifford operations. So let us apply

∏
j Z j∈n(1) to the qubits in set

a. Since Z2
j = I, we have

|C ′〉 = |00〉12|ψ〉a|φ〉b + |10〉12

⎛
⎝ ∏

j∈n(1)

Z j |ψ〉a
⎞
⎠
⎛
⎝ ∏

j∈n(1)

Z j |φ〉b
⎞
⎠

+|01〉12|ψ〉a|φ〉b − |11〉12

⎛
⎝ ∏

j∈n(2)

Z j |ψ〉a
⎞
⎠
⎛
⎝ ∏

j∈n(2)

Z j |φ〉b
⎞
⎠ . (43)
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Fig. 7 Joining to cluster states. (a) The two separate clusters. (b) The double-heralding operation
creates a redundantly encoded qubit (the qubits in the dark shaded area)

This can be written as

|C ′〉 = |0〉1|Ψ 〉c (|0〉2 + |1〉2)+ |1〉1
⎛
⎝∏

l∈n(1)

Zl |Ψ 〉c
⎞
⎠ (|0〉2 − |1〉2)

= |0〉1|Ψ 〉c|+〉2 + |1〉1
⎛
⎝∏

l∈n(1)

ZlZ2|Ψ 〉c|+〉2
⎞
⎠ . (44)

It is clear that this is again of the form of a cluster state, since qubit 2 has experienced
a Z operation depending on the state of qubit 1. We can in principle add qubit 2 to
the set c and expand the neighbourhood n(1). However, leaving it in this form reveals
something interesting about the cluster. Qubit 2 is not entangled with any qubit other
than qubit 1. We call this a leaf or a cherry in the cluster. More accurately, qubits 1
and 2 form a redundantly encoded qubit, useful for error correction (see Fig. 7b).

4.4 Complete Quantum Computer Architecture

Before I discuss the complete architecture of a quantum computer based on double
heralding, let us explore some of the advantages and disadvantages of this approach.

The main advantage of the double-heralding protocol is that the resulting entan-
glement is completely independent of both the detector efficiency and the detector
number-resolving capability. This is important, because it is extremely challeng-
ing to make photo-detectors with near perfect (>98%) efficiency while keeping
unwanted dark counts low. Because of this insensitivity to photon collection effi-
ciency, it is also not necessary for the qubit to be in the strong coupling regime of
the interaction between the optical transition and the electromagnetic field. Another
advantage is that the protocol is inherently distributed: it does not matter whether the
qubits are 10 μm apart, or 10 km. This is extremely useful for quantum communica-
tion. But more importantly, it allows us to really isolate each individual qubit and get
a good control over decoherence. In addition, a slowly varying (random) phase in
one of the input modes of the beam splitter will give at most an unobservable global
phase shift. Finally, the protocol requires only a relatively simple level structure.
There are potentially many systems that can be used for this scheme, from trapped
ions and atoms, to NV centres in diamond and Pauli blockade quantum dots.
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There are two main disadvantages to double-heralding based quantum comput-
ing. First, the success probability of the entangling operation is bounded by one
half, and with photon loss the probability becomes η2/2, where η is the total photon
collection efficiency. When the losses in the system are considerable, this makes the
creation of cluster states a very costly affair (even though we maintain mathematical
scalability at all times). Fortunately, there is a way to circumvent this problem and
simultaneously keep the advantages of double heralding. It is called the broker-client
model [10]. Instead of one qubit per site, we engineer two qubits with a high-fidelity,
high efficiency (but non-scalable) two-qubit gate. An example of this is an NV cen-
tre in diamond, where the two qubits are the electron spin and the nuclear spin. The
nuclear spin is long-lived, and can be used to store a qubit from a cluster state. The
electron spin can then be entangled with other electron spins via double-heralding,
and when this succeeds, the entanglement is transferred to the nuclear spin using
the two-qubit gate. This way, we can build up large cluster states without suffering
exploding overhead costs.

The second disadvantage of this scheme is that the qubits must be almost iden-
tical. If they are not, the photons are likely to carry some information about their
origins, and the entangling procedure gives us only non-maximal entanglement. In
terms of the HOM experiment, the cancellation of detection coincidences at the
output modes is no longer complete. When the photo-detectors have good time res-
olution, we can counter this problem to some degree [11]: knowledge of the arrival
times of the photons in the detectors will ensure that the resulting entangled state
remains pure, and a sophisticated adaptive strategy of which qubits to entangle next
allows for some variation in the qubits.

How do we put all this together? Figure 8 shows a quantum computer that oper-
ates on the double-heralding principle. It has five main components:

Fig. 8 Schematic of a quantum computer using double heralding. Maximum parallelizability is
obtained using a fast optical multiplexer. A classical CPU is needed for the tracking of the mea-
surement outcomes, the driving of the qubit control, and the setting of the multiplexer
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1. The Qubits are kept in individual environments in order to keep decoherence to
a minimum. In the broker-client model, there may be multiple qubits per site.
The qubits must be nearly identical in order to create high-fidelity cluster states.

2. The Qubit control component is designed to address the individual qubits,
applying both the π -pulses, the bit flips, and the single-qubit rotations needed
for the qubit measurements. This may involve multiple lasers and/or microwave
fields.

3. The Optical multiplexer is a router that directs the optical output modes of
the qubits into the beam splitters. This way, we can apply the double-heralding
procedure to two arbitrary qubits in the quantum computer. The 50:50 beam
splitters that are drawn outside the multiplexer in Fig. 8 can be incorporated as
well, so that we can in principle do a complete readout of all qubits in one clock
cycle.

4. The Photo-detectors must have reasonably high detection efficiency and very
low dark count rate. Good time resolution is also an advantage. There is no need
for single-photon resolution.

5. The Classical CPU keeps track of the measurement outcomes, controls the
switching of the multiplexer, and tells the qubit controller what to do. In addition,
the CPU is used to program the quantum computer, and it interprets the final
qubit readout.

Exercise 10. Calculate the effect of an unknown phase shift in one of the input
modes of the beam splitter in the double-heralding protocol.

Exercise 11. Calculate the effect of partial which-path erasure.

Exercise 12. Verify the projective action of the double-heralding procedure.

Exercise 13. When we fail to add a micro-cluster to a cluster, how do we retrieve
the cluster state?

5 Quantum Computing with Optical Nonlinearities

In the previous lecture we have seen how we can circumvent the need for quan-
tum memories when we use material systems as qubits, together with a probabilis-
tic entangling procedure. In this lecture, I show that we can obviate the need for
quantum memories by choosing the right nonlinear interaction, which makes the
entangling procedure (near) deterministic.

5.1 Kerr Nonlinearities

It has been known for a long time that we can make nonlinear optical gates using
so-called Kerr nonlinearities. These consist of optically active materials that induce
an effective photon–photon interaction. In particular, we consider the cross-Kerr
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Fig. 9 A strong optical nonlinearity called a cross-phase modulation induces a phase shift on the
vertically polarized part of mode b that depends on the number of vertically polarized photons in
mode a. The setup is symmetric and creates a CZ gate

nonlinearity shown in Fig. 9. The central box has two input modes a and b, and the
interaction Hamiltonian is of the form

HK = τ â†â b̂†b̂ . (45)

This leads to the following Bogoliubov transformations on the annihilation
operators:

â → â eiτ b̂†b̂, b̂→ b̂ eiτ â†â, (46)

in other words, the phase shift in mode a depends on the intensity of the field in
mode b. It is straightforward to show that for τ = π and two polarized input photons
in modes a and b, respectively, Fig. 9 represents a CZ gate.

Unfortunately, there are no real materials that have the properties that τ = π and
are otherwise free of noise. The question thus arises: What can we do if τ = θ ! π?
The answer is that we can again construct a parity gate [12]. To this end, we make
use of a reasonably bright coherent state that will carry the quantum correlations
from one photon to the other. We consider the setup in Fig. 10. Let the two-qubit
input state be |ψab〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉, and the coherent state
is denoted by |α〉. Assume that the interactions take place between |1〉 and |α〉. The
interaction is again a cross-Kerr nonlinearity, which produces a phase shift θ in
the coherent state depending on the photon state in the signal mode. After the first
interaction we obtain the three-mode optical state

|ψ1〉 = c00|00〉|α〉 + c01|01〉|α〉 + c10|10〉|α eiθ 〉 + c11|11〉|α eiθ 〉 , (47)
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Fig. 10 A coherent state couples to two photonic qubits via the weak cross-Kerr nonlinearity
indicated by θ . The measurement outcome determines a phase shift 2φ(x) on one qubit

and after the second interaction we have

|ψ2〉 = c00|00〉|α〉 + c01|01〉|α e−iθ 〉 + c10|10〉|α eiθ 〉 + c11|11〉|α〉 . (48)

We can separate this state into an even ({|00〉, |11〉}) and an odd ({|01〉, |10〉}) parity
contribution.

The next step is to measure the x = (â+ â†)/
√

2 quadrature of the coherent state.
We see from (48) that such a measurement leaves the even parity subspace invariant,
but not the odd subspace. To demonstrate a parity gate we calculate the projection
of |ψ2〉 onto the eigenstate of the measurement outcome |x〉:

〈x |ψ2〉 = (c00|00〉 + c11|11〉) 〈x |α〉 + c01|01〉〈x |α e−iθ 〉 + c10|10〉〈x |α eiθ 〉 . (49)

Using (A4.12) on page 235 of Ref. [13]:

〈x |α〉 = 1
4
√
π

exp

[
−1

2

(
x −
√

2α
)2
+ 1

2
α
(
α − α∗

)]
, (50)

and assuming that α is real,4 we find that

〈x |α〉 = 1
4
√
π

exp

[
−1

2

(
x −
√

2α
)2
]

(51)

and

〈x |αeiθ 〉 = 1
4
√
π

exp

[
−1

2

(
x −
√

2α cos θ
)2
+ iα sin θ (

√
2x − α cos θ )

]
. (52)

The state after the measurement is therefore

|ψ ′ab〉 = 〈x |α〉 (c00|00〉 + c11|11〉)+ |〈x |α eiθ 〉| (c01 e−iφ |01〉 + c10 eiφ|10〉) , (53)

4 In addition, we describe the coherent state in the co-rotating frame of reference, which allows us
to suppress the free time evolution of the coherent state. In particular, this means that α is real for
all times, and the nonlinear phase shift θ is included explicitly.
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Fig. 11 (a) Phase space representation of the weak nonlinear parity gate. (b) The corresponding
probability of the outcomes of an x-quadrature measurement. The overlap between the two Gaus-
sian peaks must be made sufficiently large for the gate to work near deterministically

with

φ(x) ≡ α sin θ (
√

2x − α cos θ ) . (54)

A phase space representation of the above procedure is given in Fig. 11. The relative
phase 2φ(x) can be corrected using regular phase shifts.

These two distributions peak at different values xe and xo for the even and odd
subspace, respectively,

xe =
√

2α and xo =
√

2α cos θ . (55)

The width of (the real part of) these distributions is of the order one. We can dis-
tinguish the two peaks (and correspondingly obtain a high fidelity) when xe − xo is
larger than twice the width of the distribution (θ ! 1):

xe − xo > 2 ⇔
√

2α (1− cos θ ) > 2 ⇔ α
θ2

2
√

2
> 1 . (56)

Weak nonlinearities on the order of 10−5 can be achieved using electromagnetically
induced transparencies. There are several tricks that can be used to increase the
performance of this gate [14].
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An x-quadrature measurement that can project the two-photon state onto either
one of the parity subspaces is again a parity gate, and we have seen earlier how
these projections are useful for quantum computing. Here, the parity projection is
practically deterministic if the peak separation is big enough, which means that
cluster state growth can be very efficient.

5.2 Zeno Gates

Another optical nonlinearity that may be used to construct a near-deterministic two-
photon gate is two-photon absorption. This is the basis of the so-called Zeno gate
by Franson, Jacobs, and Pittman [15], and is shown in Fig. 12. The gate works
similarly to the strong Kerr gate shown in Fig. 9, but the detailed physics of the
central (yellow) box differs.

Before I describe the Zeno gate, let us look at a possible experimental implemen-
tation of a beam splitter: typically, we think of a beam splitter as a semi-reflective
mirror, but there are also other ways. Many people who study photons in optical
fibres make the beam splitters with fibres as well, so how is this done? In gen-
eral, any unitary two-mode transformation can be described by the matrix given in
Eq. (8). If we take a length of fibre and splice it at both ends, we end up with two
fibres that join for a certain length, and then separate again. Because the action of
such a physical object behaves according to Eq. (8), we can model this as a beam
splitter, where the transmission coefficient is now related to the length of the joined
piece of fibre. The evolution is therefore something like this:

Fig. 12 (a) A CZ gate using the Zeno effect. The n beam splitters have transmittivity 1/n, and are
separated by dissipative two-photon absorbers. In the limit of n → ∞, and perfect two-photon
absorption, the Zeno gate implements a perfect CZ gate. (b) The beam splitters are implemented
using a spliced fibre with two cores, each filled with atoms that absorb two-photon excitations
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|00〉 → |00〉,
|01〉 → cos θ |01〉 + i sin θ |10〉,
|10〉 → i sin θ |01〉 + cos θ |10〉,
|11〉 → cos 2θ |11〉 + i sin 2θ√

2
(|20〉 + |02〉) , (57)

where 0, 1, and 2 denote the photon occupation number of the mode, and we have
chosen a convenient phase convention.5

The Zeno gate works like this spliced fibre, with a small but essential modifica-
tion: consider two fibres with a hollow core that come together at some point, remain
parallel for a certain distance, and then separate. Again, this is properly described by
(8) and (57). Photons entering one fibre couple to the other fibre via the evanescent
electromagnetic field, and they can tunnel from one core to the other. If the length
is chosen correctly, we can make the photons come out in the other fibre. When
two photons enter the device, one in each input fibre, we can also demonstrate the
Hong-Ou-Mandel effect.6

To make the Zeno gate, we fill both cores with a linear array of atoms that have a
strong two-photon absorption and negligible single-photon absorption. When only
a single photon enters the device, the atoms have no effect on the dynamics, and
the photon exits in some superposition of the output modes. On the other hand,
when two photons enter the device, one in each input mode, they are prevented
from building up the two-photon amplitude due to the absorption: after a very short
distance, the two-photon input state evolves according to (57) with θ ! 1. When
the photons encounter the first atom, the term in the superposition with two photons
in one mode will transform into the vacuum because the atom absorbs the photons
and dissipates the energy into the environment. This is effectively a measurement
where we throw away the measurement outcome.

Since the length of free evolution in the fibre cores is so short (the atoms are
placed closely together), the amplitude i sin θ is very small, and the probability of
two-photon absorption is also tiny. Therefore, after the photons encounter the atoms,
they are projected onto the |11〉 state with very high probability. En route to the
next atom, they will evolve again, and this procedure repeats until the fibre cores
separate. The atoms act as an almost continuous measurement, preventing the state
from building up an appreciable absorption amplitude. This is commonly known as
the Zeno effect. The photons will exit the interaction region in different modes, due
to the suppression of the HOM effect.

Why does this work as a two-photon gate? To answer this, we look at the accu-
mulated phases of the four possible input states |00〉, |01〉, |10〉, and |11〉. Clearly,
the state |00〉 remains unchanged, because there are no photons at all. The length of
the interaction is chosen such that a single-photon input (|01〉 or |10〉) is transmit-

5 We can always include phase shifts in the fibres to make the interaction of this form.
6 For the HOM effect to take place, the length of joined fibre must be half the length of the fibre in
the case where single photons enter one core and exit the other.



216 P. Kok

ted perfectly into the other core. The accumulated phase for a transmitted photon
is eiπ/2, according to (57). Finally, when two photons enter the device (i.e. the
state |11〉), the beam splitter action is suppressed, and the photons are effectively
reflected. The phase associated with perfect reflection is 1. By choosing suitable
phase shifts in the output modes, this interaction can be turned into a CZ gate:

UZeno =

⎛
⎜⎜⎝

1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

⎞
⎟⎟⎠ →phase shift UCZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ . (58)

This is the physical intuition behind the Zeno gate. Let us derive this result slightly
more formally.

We consider the ideal case where the two-photon absorption is perfect, and there
is no single-photon absorption (or loss). Since the two-photon absorption is followed
by spontaneous emission into the environment, the evolution is incoherent, and we
can no longer use a pure state description of the situation. We therefore construct
the positive operator-valued measures (POVMS) for the different measurement out-
comes [16]. In general, an arbitrary input state ρ will evolve according to

ρ → ρ̃ = L(ρ) ≡
∑

k=1,2

AkρA†
k, (59)

where the Ak are the Kraus operators (or effects) that define the effect of the mea-
surement on the state. Each measurement outcome is represented by a specific Ak .
Since we discard the measurement outcomes in our Zeno gate, we need to sum over
all k. Note that here we are talking about the state ρ of one optical mode (or one
fibre core). The Kraus operators satisfy the relation

∑
k A†

k Ak = I, which ensures
that ρ̃ is a proper density operator.

In this case we have two Kraus operators: one when there is no absorption, and
one for two-photon absorption. When there is no absorption, nothing happens, and
the corresponding Kraus operator is the identity operator on the relevant subspace
(spanned by |0〉〈0| and |1〉〈1|). On the other hand, two-photon absorption can be
formalized as changing the state |2〉 into |0〉. We therefore have

A1 = |0〉〈0| + |1〉〈1| and A2 = |0〉〈2|. (60)

In order to evaluate the effect of the Zeno gate we need to apply the super-operator
L(ρ) to both modes every time an atom is encountered. Clearly, L(ρ) is acting as the
identity if there is at most one photon in the system, so |01〉 → i|10〉 and |10〉 →
i|01〉. But what about the |11〉 term?

The density operator for the state |11〉 is given by |11〉〈11|, and the beam splitter
evolution in (57) will give
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ρ = cos2(2θ )|11〉〈11| + 1

2
sin2(2θ ) (|20〉 + |02〉) (〈20| + 〈02|)

+ i√
2

cos(2θ ) sin(2θ ) [(|20〉 + |02〉) 〈11| − |11〉 (〈20| + 〈02|)] . (61)

When we apply the super-operator L(ρ), we find that

ρ̃ =
∑

k

AkρA†
k = cos2(2θ )|11〉〈11| + sin2(2θ )|00〉〈00|. (62)

The term |00〉〈00| is invariant under both the beam splitter evolution and the
two-photon absorption, and does not change during the remainder of the gate. The
|11〉〈11| term will again undergo the evolution in (62). After the full length of the
joined fibre (involving n atoms), the evolution is

|11〉〈11| → cos2n(2θ )|11〉〈11| + (1− cos2n(2θ ))|00〉〈00|. (63)

The case of the input state |01〉 is symmetric to the input state |10〉, so we need
to discuss only one of them here. Since the Kraus operator in this subspace is the
identity operator, the evolution is a series of n rotations over angle θ , which can be
written as

|01〉 → cos(nθ )|01〉 + i sin(nθ )|10〉,
|10〉 → i sin(nθ )|01〉 + cos(nθ )|10〉. (64)

These are all the ingredients we need to analyse the ideal Zeno gate.
Remember that for the Zeno gate to work the single-photon input states must

be swapped (perfect transmission), while total reflection must occur when there are
two photons entering the device, one in each input mode. Therefore, we must choose
nθ = π/2, and this generates a phase shift i on the photon.

Using this choice of θ , the probability amplitude of the |11〉 term becomes
cosn(π/n). In order to have a proper Zeno effect, n must be very large. We can
expand the cosine function to first order and take the limit of n to infinity:

lim
n→∞

(
1− π2

2n2

)n

= 1. (65)

Indeed, the two-photon absorption [1− cos2n(π/n)] is completely suppressed. Fur-
thermore, the phase of the |11〉 term is unaffected.

We now have the situation where single photons are transmitted (and accumulate
a phase i), while two input photons are both reflected (and do not experience a phase
shift). A simple swap of the output modes will then result in |01〉 ↔ |10〉, and the
transformation becomes of the form of UZeno in (58).

So far, we analysed the Zeno gate in the ideal case of perfect two-photon absorp-
tion and no single-photon absorption using POVMS. When the situation is not ideal
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(e.g. in the case of survival of the |20〉 and |02〉 terms and photon loss), the Kraus
operators need to be modified and the calculation will become much harder. Alter-
natively, the problem can be formulated in Lindblad form or in terms of a master
equation, which can then be solved using standard techniques [13].

Exercise 14. Prove (46).

Exercise 15. Verify (53) and (54).

Exercise 16. Calculate the fidelity of this gate for an equal-superposition input state
c00 = c01 = c10 = c11 = 1

2 .

Exercise 17. Verify (57) and (58).

Exercise 18. Check that the Kraus operators in (60) obey the normalization condi-
tion, and verify (62).

Final Remarks

Single photons are very resilient to decoherence, and they travel at very high speed.
This makes them the ideal carriers for quantum information. It is therefore likely
that optical systems will play an important role in future quantum information
technology. However, the lack of a direct interaction between photons means that
some trickery must be used if you want them to carry out quantum computations.
There have been several proposals for optical quantum computers, the best known
of which is the Knill–Laflamme–Milburn scheme using only photons, linear optics,
and photo-detectors. This scheme, and its improvements, needs quantum memo-
ries, because they rely critically on the feed-forward of measurement outcomes to
modify subsequent interferometry. As a consequence, the advantage of photons as
slow-decohering qubits is lost: decoherence now takes place in the memory.

In these lectures, I have argued that you can either choose to live with it and
make the quantum memories your qubits (which of course means that you have
to engineer high-quality qubits), or you can turn to nonlinear interactions to create
deterministic gates (an equally daunting task). At this point it is not clear what the
greater challenge is. Finally, all the results presented here rely to a greater or lesser
extent on the ability to create identical single-photon wave packets.

Acknowledgements I thank Simon Benjamin and Dan Browne for valuable discussions, and Erik
Gauger for carefully reading the manuscript. I also thank Francesco Petruccione and the University
of KwaZulu-Natal in South Africa for inviting me to give these lectures. This work was done as
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Quantum Information and Relativity:
An Introduction

Daniel R. Terno

Information and physics are closely and fascinatingly intertwined. Their relations
become even more interesting when we leave a non-relativistic quantum mechanics
for more exiting venues. My notes are planned as a guided tour for the first steps
along that road, and at the same time as an illustration of the basic notions of quan-
tum information theory in more exotic settings.

I start from a brief introduction to causality restrictions on the distributed mea-
surements: the limitations that are imposed by final propagation velocity of the
physical interactions. It is followed by the relativistic transformations of the states
of massive particles and photons, from which we can deduce what happens to qubits
which are realized as the discrete degrees of freedom. Building on this, I discuss the
distinguishability of quantum signals, and briefly touch communication channels
and the bipartite entanglement. Creation of the entanglement in scattering processes
will be touched only briefly, while the fascinating experimental results on the entan-
glement in particle physics are discussed in the contribution by Beatrix Hiesmayr.

I do not follow a historical order or give all of the original references. A review
[1] is used as the standard reference on quantum information and relativity. The
results of the “usual” quantum information and the formalism of the measurement
theory are usually given without any reference. In this case they can be found in at
least one of the sources [2–6]. Finally, a word about units: � = c = 1 are always
assumed.

1 Causality and Distributed Measurements

Here I present the causality constraints on quantum measurements. For simplicity,
measurements are considered to be point-like interventions. First recall the standard
description of the measurement and the induced state transformation. Consider a
system in the state ρ that is subject to measurement that is described by a positive
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operator-valued measure (POVM) {Eμ}. The probability of the outcome μ is

pμ = Tr Eμρ, (1)

while the state transformation is given by some completely positive evolution:

ρ → ρ ′μ =
∑

m

AμmρA†
μm/pμ,

∑
m

A†
μm Aμm = Eμ. (2)

If the outcome is left unknown, the update rule is

ρ → ρ =
∑
μm

AμmρA†
μm . (3)

Now consider a bipartite state ρAB . The operations of Alice and Bob are given
by the operators Aμm and Bνn , respectively. It is easy to see that if these operators
commute,

[Aμm, Bνn] = 0, (4)

then the observation statistics of Bob is independent of Alice’s results and vice versa.
Indeed, the probability that Bob gets a result ν, irrespective of what Alice found, is

pν =
∑
μ

tr
(∑

m,n

Bνn Aμm ρ A†
μm B†

νn

)
. (5)

Now make use of (4) to exchange the positions of Aμm and Bνn , and likewise
those of A†

μm and B†
νn , and then we move Aμm from the first position to the last one

in the product of operators in the traced parenthesis. Since the elements of a POVM
satisfy

∑
μ Eμ = 1l, (5) reduces to

pν = tr
(∑

n

Bνn ρ B†
νn

)
, (6)

whence all the expressions involving Alice’s operators Aμm have totally disap-
peared. The statistics of Bob’s result are not affected at all by what Alice may simul-
taneously do somewhere else. This proves that (4) indeed is a sufficient condition
for no instantaneous information transfer. In particular, the local operations A⊗ 1lB

and 1lA ⊗ B are of this form.
Note that any classical communication between distant observers can be con-

sidered a kind of long range interaction. The propagation of signals is, of course,
bounded by the velocity of light. As a result, there exists a partial time order-
ing of the various interventions in an experiment, which defines the notions ear-
lier and later. The input parameters of an intervention are deterministic (or possi-
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bly stochastic) functions of the parameters of earlier interventions, but not of the
stochastic outcomes resulting from later or mutually spacelike interventions [1].

Even these apparently simple notions lead to non-trivial results. Consider a sep-
arable bipartite superoperator T ,

T (ρ) =
∑

k

MkρM†
k , Mk = Ak ⊗ Bk, (7)

where the operators Ak represent operations of Alice and Bk those of Bob. Not
all such superoperators can be implemented by local transformations and classical
communication (LOCC) [7]. This is the foundation of the “non-locality without
entanglement”.

A classification of bipartite state transformations was introduced in [8]. It con-
sists of the following categories. There are localizable operations that can be imple-
mented locally by Alice and Bob, possibly with the help of prearranged ancillas, but
without classical communication. Ideally, local operations are instantaneous, and
the whole process can be viewed as performed at a definite time. A final classical
output of such distributed intervention will be obtained at some point of the (joint)
causal future of Alice’s and Bob’s interventions. For semilocalizable operations, the
requirement of no communication is relaxed and one-way classical communication
is possible. It is obvious that any tensor-product operation TA ⊗ TB is localizable,
but it is not a necessary condition. For example the Bell measurements, which dis-
tinguishes between the four standard bipartite entangled qubit states,

|Ψ ±〉 := 1√
2

(|0〉|1〉 ± |1〉|0〉), |Φ±〉 := 1√
2

(|0〉|0〉 ± |1〉|1〉), (8)

are localizable.
Other classes of bipartite operators are defined as follows: Bob performs a local

operation TB just before the global operation T . If no local operation of Alice can
reveal any information about TB, i.e., Bob cannot signal to Alice, the operation T is
semicausal. If the operation is semicausal in both directions, it is causal. In many
cases it is easier to prove causality than localizability (see Remark 3). There is a
necessary and sufficient condition for the semicausality (and therefore, the causality)
of operations [8].

These definitions of causal and localizable operators appear equivalent. It is
easily proved that localizable operators are causal. It was shown that semicausal
operators are always semilocalizable [9]. However, there are causal operations that
are not localizable [8].

It is curious that while a complete Bell measurement is causal, the two-outcome
incomplete Bell measurement is not. Indeed, consider a two-outcome PVM

E1 = |Φ+〉〈Φ+|, E2 = 1l− E1. (9)
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If the initial state is |01〉AB, then the outcome that is associated with E2 always
occurs and Alice’s reduced density matrix after the measurement is ρA = |0〉〈0|. On
the other hand, if before the joint measurement Bob performs a unitary operation
that transforms the state into |00〉AB, then the two outcomes are equiprobable, the
resulting states after the measurement are maximally entangled, and Alice’s reduced
density matrix is ρA = 1

2 1l. A simple calculation shows that after this incomplete
Bell measurement two input states |00〉AB and |01〉AB are distinguished by Alice
with a probability of 0.75.

Here is another example of a semicausal and semilocalizable measurement which
can be executed with one-way classical communication from Alice to Bob. Consider
a PVM measurement, whose complete orthogonal projectors are

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉|+〉, |1〉 ⊗ |−〉, (10)

where |±〉 = (|0〉 ± |1〉)/√2. The Kraus matrices are

Aμj = Eμδ j0. (11)

From the properties of complete orthogonal measurements [8], it follows that this
operation cannot be performed without Alice talking to Bob. A protocol to realize
this measurement is the following. Alice measures her qubit in the basis {|0〉, |1〉},
and tells her result to Bob. If Alice’s outcome was |0〉, Bob measures his qubit in
the basis {|0〉, |1〉}, and if it was |1〉, in the basis {|+〉, |−〉}.

If one allows for more complicated conditional state evolution [10], then more
measurements are localizable. In particular, consider a verification measurement,
i.e., the measurement yields a μ-th result with certainty, if the state prior to the clas-
sical interventions was given by ρ = Eμ, but without making any specific demand
on the resulting state ρ ′μ.

It is possible to realize a verification measurement by means of a shared entan-
gled ancilla and Bell-type measurement by one of the parties [11]. Verification mea-
surement of Eq. (10) can illustrate this construction. In addition to the state to be
tested, Alice and Bob share a Bell state |Ψ −〉. They do not have to coordinate their
moves. Alice and Bob perform tasks independently and convey their results to a
common center, where a final decision is made.

The procedure is based on the teleportation identity

|Ψ 〉1|Ψ −〉23 = 1
2

(|Ψ −〉12|Ψ 〉3 + |Ψ +〉12|Ψ̃ (z)〉3 + |Φ−〉12|Ψ̃ (x)〉3 + |Φ+〉12|Ψ̃ (y)〉3
)
,

(12)
where |Ψ̃ (z)〉means the state |Ψ 〉 rotated by π around the z-axis, etc. The first step of
this measurement corresponds to the first step of a teleportation of a state of the spin
from B (Bob’s site) to A (Alice’s site). Bob and Alice do not perform the full tele-
portation (which requires a classical communication between them). Instead, Bob
performs only the Bell measurement at his site which leads to one of the branches
of the superposition in the rhs of Eq. (12).



Quantum Information and Relativity: An Introduction 225

The second step of the verification measurement is taken by Alice. Instead of
completing the teleportation protocol, she measures the spin of her particle in the z
direction. According to whether that spin is up or down, she measures the spin of
her ancilla in the z or x direction, respectively. This completes the measurement and
it only remains to combine the local outcomes to get the result of the nonlocal mea-
surement [11]. This method can be extended to arbitrary Hilbert space dimensions.

Remarks

1. Measurements in quantum field theory are discussed in [1, 6].
2. An algebraic field theory approach to statistical independence and to related top-

ics is presented in [12, 13].
3. To check the causality of an operation T whose outcomes are the states ρμ =

Tμ(ρ)/pμ with probabilities pμ = tr Tμ(ρ),
∑

μ pμ = 1 it is enough to consider
the corresponding superoperator:

T ′(ρ) :=
∑
μ

Tμ(ρ). (13)

Indeed, assume that Bob’s action prior to the global operation lead to one of the
two different states ρ1 and ρ2. Then the states T ′(ρ1) and T ′(ρ2) are distinguish-
able if and only if some of the pairs of states Tμ(ρ1)/pμ1 and Tμ(ρ2)/pμ2 are
distinguishable. Such probabilistic distinguishability shows that the operation T
is not semicausal.

4. Absence of the superluminal communication makes it possible to evade the
theorems on the impossibility of a bit commitment. In particular the protocol
RBC2 allows a bit commitment to be indefinitely maintained with uncondition-
ally security against all classical attacks, and at least for some finite amount of
time against quantum attacks [14, 15].

5. In these notes I am not going to deal with the relativistic localization POVM.
Their properties (and difficulties in their construction) can be found in [1]. An
exhaustive survey of the spatial localization of photons is given in [16]. Here we
only note in passing that if E(O) is an operator that corresponds to the detection
of an event in a spacetime region O, since they are not thought to be imple-
mented by physical operations confined to that spacetime area, the condition
[E(O1), E(O2)] = 0 is not required [17, 18].

2 Quantum Lorentz Transformations

There is no elementary particle that is called “qubit”. Qubits are realized by partic-
ular degrees of freedom of more or less complicated systems. To decide how qubits
transform (e.g., under Lorentz transformations) it may be necessary to consider
again the entire system. In the following our qubit will be either a spin of a massive
particle or a polarization of a photon. A quantum Lorentz transformation connects
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spin

momentum

classical info

D

Fig. 1 Relativistic state transformation as a quantum circuit: the gate D which represents the
matrix Dξσ [W (Λ, p)] is controlled by both the classical information and the momentum p, which
is itself subject to the classical information Λ

the description of a quantum state |Ψ 〉 in two reference frames that are connected
by a Lorentz transformation Λ (i.e., their coordinate axes are rotated with respect
to each other and the frames have a fixed relative velocity). Then |Ψ ′〉 = U (Λ)|Ψ 〉,
and the unitary U (Λ) is represented on Fig. 1. The purpose of this section is to
explain the elements of this quantum circuit.

From the mathematical point of view the single-particle states belong to some
irreducible representation of the Poincaré group. An introductory discussion of these
representations and their relations with states and quantum fields may be found, e.g.,
in [19, 20]. Within each particular irreducible representation there are six commut-
ing operators. The eigenvalues of two of them are invariants that label the represen-
tation by defining the mass m and the intrinsic spin j . The basis states are labeled
by three components of the momentum p and the spin operator Σ3. Hence a generic
state is given by

|Ψ 〉 =
∑
σ

∫
dμ(p)ψσ (p)|p, σ 〉. (14)

In this formula dμ(p) is the Lorentz-invariant measure,

dμ(p) = 1

(2π )3

d3p
2E(p)

, (15)

where the energy E(p) = p0 =
√

p2 + m2. The improper momentum and spin
eigenstates are δ-normalized,

〈p, σ |q, σ ′〉 = (2π )3(2E(p))δ(3)(p− q)δσσ ′, (16)

and are complete on the one-particle space, which is H = C2 j+1⊗L2(R3, dμ(p)) for
spin- j fields. To find the transformation law we have to be more concrete about the
spin operator. The operator Σ3(p) is a function of the generators of the Poincaré
group. One popular option is helicity, Σ3 = J · P/|P|, where J is the angular
momentum and P is the particle’s 3-momentum. This quantity is well-defined for
both massive and massless particles. For massive particles we use the z-component
of the rest-frame (or Wigner spin), that we now describe in the next section.
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2.1 Massive Particles

The construction involves picking a reference 4-momentum k, which for massive
particles is taken to be kR = (m, 0). The Wigner spin S(p) is defined to coincide
with the non-relativistic spin S in particle’s rest frame. The state of a particle at rest
is labeled |kR, σ 〉:

S2|kR, σ 〉 = j( j + 1)|kR, σ 〉, S3|kR, σ 〉 = σ |kR, σ 〉. (17)

The spin states of arbitrary momenta are defined as follows. The standard rotation-
free boost that brings kR to an arbitrary momentum p, pμ = L(p)μνkν is given
by

L(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

m

p1

m

p2

m

p3

m

p1

m
1+ p2

1

m(m + E)

p1 p2

m(m + E)

p1 p3

m(m + E)

p2

m

p2 p1

m(m + E)
1+ p2

2

m(m + E)

p2 p3

m(m + E)

p3

m

p3 p1

m(m + E)

p3 p2

m(m + E)
1+ p2

3

m(m + E)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The Wigner spin S(p) and the one-particle basis states are defined by

|p, σ 〉 ≡ U [L(p)]|kR, σ 〉, S3(p)|p, σ 〉 = σ |p, σ 〉. (19)

In deriving the transformation rules we begin with the momentum eigenstates.
Using the group representation property and (19) the transformation is written as

U (Λ) = U [L(Λp)]U [L−1(Λp)ΛL(p)]U [L−1(p)]. (20)

The element of the Lorentz group

W (Λ, p) ≡ L−1(Λp)ΛL(p), (21)

leaves kR invariant, kR = W kR . Hence it belongs to the stability subgroup (or
Wigner little group) of kR . For kR = (m, 0) it is a rotation. Pressing on,

U (Λ)|p, σ 〉 = U [L(Λp)]U [W (Λ, p)]|kR, σ 〉, (22)

and as a result,

U (Λ)|p, σ 〉 =
∑
ξ

Dξσ [W (Λ, p)]|Λp, ξ 〉, (23)
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where Dξσ are the matrix elements of the representation of the Wigner rotation
W (Λ, p).

We consider only spin- 1
2 particles, so σ = ± 1

2 . Any 2× 2 unitary matrix can be
written as D̂ = exp(−iωn̂ · σ ), where ω is a rotation angle and n̂ is a rotation axis
that corresponds to W (Λ, p).

The wave functions transform according to ψ ′ξ (q) = 〈ξ, q|U (Λ)|Ψ 〉 so the same
state in the Lorentz-transformed frame is

|Ψ ′〉 = U (Λ)|Ψ 〉 =
∑
σ,ξ

∫ ∞
−∞

Dσξ [W (Λ,Λ−1 p)]ψξ (Λ−1 p)|σ, p〉dμ(p). (24)

For pure rotation R the three-dimensional (more exactly, 3D block of 4D matrix;
here and in the following we use the same letter for a 4D and 3D matrix for
R ∈SO(3)) Wigner rotation matrix is the rotation itself,

W (R, p) = R, ∀p = (p0,p). (25)

As a result, the action of Wigner spin operators on H1 is given by than the halves of
Pauli matrices that are tensored with the identity of L2.

2.2 Photons

The single-photon states are labeled by momentum p (the 4-momentum vector is
null, E = p0 = |p|) and helicity σp = ±1, so the state with a definite momentum
is given by

∑
σ=±1 ασ |p, σp〉, where |α+|2 + |α−|2 = 1. Polarization states are also

labeled by 3-vectors εσ
p , p ·εσ

p = 0, that correspond to the two senses of polarization
of classical electromagnetic waves. An alternative labeling of the same state, there-
fore, is

∑
σ=±1 ασ |p, εσ

p 〉. Helicity is invariant under proper Lorentz transformation,
but the basis states acquire phases.

The little group element W (Λ, p) = L−1(Λp)ΛL(p) is defined with respect to
the standard four-momentum kR = (1, 0, 0, 1). The standard Lorentz
transformation is

L(p) = R(p̂)Bz(u), (26)

where Bz(u) is a pure boost along the z-axis with a velocity u that takes kR to the
vector (|p|, 0, 0, |p|) and R(p̂) is the standard rotation that carries the z-axis into
the direction of the unit vector p̂. If p̂ has polar and azimuthal angles θ and φ, the
standard rotation R(p̂) is accomplished by a rotation by θ around the y-axis, that is
followed by a rotation by φ around the z-axis. Hence,

R(p̂) =
⎛
⎝

cos θ cosφ − sinφ cosφ sin θ

cos θ sinφ cosφ sinφ sin θ

− sin θ 0 cos θ

⎞
⎠ (27)
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(here only the non-trivial 3D block is shown).
An arbitrary little group element for a massless particle is decomposed

according to

W (Λ, p) = S(β, γ )Rz(ξ ), (28)

where the elements S(β, γ ) form a subgroup that is isomorphic to the translations
of the Euclidean plane and Rz(ξ ) is a rotation around the z-axis. We are interested
only in the angle ξ , since β and γ do not correspond to the physical degrees of
freedom. However, they are important for gauge transformations. Finally, the little
group elements are represented by

Dσ ′σ = exp(iξσ )δσ ′σ . (29)

It is worthwhile to derive more explicit expressions for ξ . I begin with rotations,
Λ = R. Since rotations form a subgroup of a Lorentz group, R−1(Rp̂)RR(p̂) is a
rotation that leaves ẑ invariant and thus is of the form Rz(ω) for some ω. A boost in
(t, z) plane and a rotation around z-axis commute, [Rz, Bz] = 0, so

W (R, p) = R−1(Rp̂)RR(p̂) = Rz(ξ ). (30)

Any rotation can be described by two angles that give a direction of the axis and
the third angle that gives the amount of rotation around that axis. If Rp = q, we
decompose the rotation matrix as

R = Rq̂(ω)R(q̂)R−1(p̂), (31)

where Rq̂(ω) characterizes a rotation around q̂, and R(q̂) and R(p̂) are the standard
rotations that carry the z-axis to q̂ and p̂, respectively. Using (30) we find that S = 1l
and the two rotations are of the same conjugacy class,

Rz(ξ ) = R−1(Rp̂)RRp̂(ω)R(Rp̂), (32)

so we conclude that ξ = ω.
A practical description of polarization states is given by spatial vectors that

correspond to the classical polarization directions. Taking again kR as the ref-
erence momentum, two basis vectors of linear polarization are ε1

kR
= (1, 0, 0)

and ε2
kR
= (0, 1, 0), while to the right and left circular polarizations correspond

ε±kR
= (ε1

kR
± iε2

kR
)/
√

2.
Phases of the states obtained by the standard Lorentz transformations L(p) are

set to 1. Since the standard boost Bz(u) leaves the four-vector (0, ε±kR
) invariant, we

define a polarization basis for any p as

ε±p = ε±p̂ ≡ R(p̂)ε±kR
, (33)
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while the transformation of polarization vectors under an arbitrary rotation R is
given by the rotation itself. To see the agreement between transformations of spatial
vectors and states, consider a generic state with a momentum p. Its polarization is
described by the polarization vector α(p) = α+ε+p + α−ε−p , or by the state vector
α+|p,+〉+ α−|p,−〉. Using (33) we see that the transformation of α(p) is given by

Rα(p) = RRp̂(ω)R(Rp̂)R−1(p̂)α(p) = RRp̂(ω)R(Rp̂)α(kR) = RRp̂(ω)α(Rp̂).
(34)

If q = Rp the transformation results in α+eiωε+q + α−e−iωε−q , and since ω = ξ , it
is equivalent to the state transformation

U (R)(α+|p,+〉 + α−|p,−〉) = α+eiξ |q,+〉 + α−e−iξ |q,−〉. (35)

For a general Lorentz transformations the triad (ε1
p, ε

2
p, p̂) is rigidly rotated, but

in a more complicated fashion. To obtain the phase for a general Lorentz transfor-
mation, we decompose the latter into two rotations and a standard boost Bz along
the z-axis:

Λ = R2 Bz(u)R1. (36)

It can be shown that Bz alone does not lead to a phase rotation. Therefore,

ξ = ω1 + ω2, (37)

where both ω1 and ω2 are due to the rotations and are given by (31). Note that
although Bz(u) alone does not lead to a phase rotation, it can affect the value of ω2,
since it indirectly appears in the definition of R2.

Remarks

1. A comprehensive discussion of the Poincaré group in physics can be found in
[21, 22]. Useful expressions for Wigner rotations and their applications for mas-
sive particles are given in [23–25].

2. In this transformation I do not assume any additional normalization factors. A
condition of unitarity is UU † = U †U = 1l, but there also other conventions in
the literature.

3. A double infinity of the positive energy solutions of the Dirac equation (func-
tions u(1/2)

p and u(−1/2)
p ) spans an improper basis of this space. There is a one-to-

one correspondence between Wigner and Dirac wave functions. Basis vectors of
Wigner and Dirac Hilbert spaces are in the one-to-one correspondence [22],

u(1/2)
p ⇔ | 12 , p〉, u(−1/2)

p ⇔ | 12 , p〉, (38)

while the wave functions are related by
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Ψ α(p) = ψ1/2(p)u(1/2)α
p + ψ−1/2(p)u(−1/2)α

p (39)

2mψσ (p) =
4∑

α=1

u(−σ )
αp Ψ α(p). (40)

4. Another approach to the construction of the Wigner rotation D̂ is based on the
homomorphism between Lorentz group and SL(2) [22].

5. When not restricted to a single-particle space the Wigner spin operator is
given by

S = 1
2

∑
η,ζ

σ ηζ

∫
dμ(p)(â†

ηpâζ p + b̂†
ηpb̂σ p), (41)

where â†
ηp creates a mode with a momentum p and spin η along the z-axis, etc.

A comparison of different spin operators can be found in [26].
6. If one works with the 4-vectors, then in the helicity gauge the polarization vec-

tor is given by εp = (0, εp). A formal connection between helicity states and
polarization vectors is made by first observing that three spin-1 basis states can
be constructed from the components of a symmetric spinor of rank 2. Unitary
transformations of this spinor that are induced by R are in one-to-one corre-
spondence with transformations by R of certain linear combinations of a spatial
vector. In particular, transformations of the helicity ±1 states induced by rota-
tions are equivalent to the rotations of (ε1

kS
± iε2

kS
)/
√

2 (the z-axis is the initial
quantization direction). While pμε

μ
p = 0 gauge condition is Lorentz-invariant,

the spatial orthogonality is not. The role of gauge transformations in preserving
the helicity gauge and some useful expressions for the phase that photons acquire
can be found in [27–29].

3 Implications of Quantum Lorentz Transformations

3.1 Reduced Density Matrices

In a relativistic system whatever is outside the past light cone of the observer is
unknown to him, but also cannot affect his system, therefore does not lead to deco-
herence (here, I assume that no particle emitted by from the outside the past cone
penetrates into the future cone). Since different observers have different past light
cones, by tracing out they exclude from their descriptions different parts of space-
time. Therefore any transformation law between them must tacitly assume that the
part excluded by one observer is irrelevant to the system of another.

Another consequence of relativity is that there is a hierarchy of dynamical vari-
ables: primary variables have relativistic transformation laws that depend only
on the Lorentz transformation matrix Λ that acts on the spacetime coordinates.
For example, momentum components are primary variables. On the other hand,
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secondary variables such as spin and polarization have transformation laws that
depend not only on Λ, but also on the momentum of the particle. As a consequence,
the reduced density matrix for secondary variables, which may be well defined in
any coordinate system, has no transformation law relating its values in different
Lorentz frames.

Moreover, an unambiguous definition of the reduced density matrix is possible
only if the secondary degrees of freedom are unconstrained, and photons are the
simplest example when this definition fails. In the absence of a general prescription,
a case-by-case treatment is required. I describe a particular construction, valid with
respect to a certain class of tests.

3.2 Massive Particles

For a massive qubit the usual definition of quantum entropy has no invariant mean-
ing. The reason is that under a Lorentz boost, the spin undergoes a Wigner rotation,
that as shown on Fig. 1 is controlled both by the classical data and the corresponding
momentum. Even if the initial state is a direct product of a function of momen-
tum and a function of spin, the transformed state is not a direct product. Spin and
momentum become entangled.

Let us define a reduced density matrix,

ρ =
∫

dμ(p)ψ(p)ψ†(p). (42)

It gives statistical predictions for the results of measurements of spin components
by an ideal apparatus which is not affected by the momentum of the particle. Note
that I tacitly assumed that the relevant observable is the Wigner spin. The spin
entropy is

S = −Tr(ρ log ρ) = −
∑

j

λ j log λ j , (43)

where λ j are the eigenvalues of ρ.
As usual, ignoring some degrees of freedom leaves the others in a mixed state.

What is not obvious is that in the present case the amount of mixing depends on the
Lorentz frame used by the observer. Indeed consider another observer (Bob) who
moves with a constant velocity with respect to Alice who prepared that state. In the
Lorentz frame where Bob is at rest, the state is given by (24).

As an example, take a particle prepared by Alice to be

|Ψ 〉 = χ

∫
ψ(p)|p〉dμ(p), χ =

(
ζ

η

)
, (44)
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Fig. 2 Dependence of the spin entropy S, in Bob’s frame, on the values of the angle θ and a
parameter Γ = [1− (1− v2)1/2]Δ/mv

where ψ is concentrated near zero momentum and has a characteristic spread Δ.
Spin density matrices of all the states that are given by (44) are

ρ =
(|ζ |2 ζη∗

ζ ∗η |η|2
)
, (45)

and are independent of the specific form of ψ(p). To make calculations explicit (and
simpler) I take the wave function to be Gaussian, ψ(p) = N exp(−p2/2Δ2), where
N is a normalization factor. Spin and momentum are not entangled, and the spin
entropy is zero. When that particle is described in Bob’s Lorentz frame, moving
with velocity v at the angle θ with Alice’s z-axis, a detailed calculation shows that
the the spin entropy is positive [1]. This phenomenon is illustrated in Fig. 2. A
relevant parameter, apart from the angle θ , is in the leading order in momentum
spread:

Γ = Δ

m

1−√1− v2

v
, (46)

where Δ is the momentum spread in Alice’s frame. The entropy has no invariant
meaning, because the reduced density matrix τ has no covariant transformation law,
except in the limiting case of sharp momenta. Only the complete density matrix
transforms covariantly.

I outline some of the steps in this derivation. First, we calculate the rotation
parameters (ω, n̂) of the orthogonal matrix W (Λ, p) for a general momentum. The
rotation axis and angle are given by

n̂ = v̂× p̂, cos θ = v̂ · p̂, 0 ≤ θ ≤ π , (47)
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where v̂ is boost’s direction, while the leading order term for the angle is

ω = 1−√1− v2

v

p

m
sin θ −O

(
p2

m2

)
. (48)

Without a loss of generality we can make another simplification. We can choose
our coordinate frame in such a way that both ζ and η are real. The matrix
D[W (Λ,Λ−1 p)] takes the form

D[W (Λ, p′)] = σ0 cos
ω

2
− i sin

ω

2
(− sinφ σx + cosφ σy), (49)

where (θ, φ) are the spherical angle of p′ (to be consistent with Eq. (24) momentum
in Alice frame carries a prime, p′ = Λ−1 p). The reduced density matrix in Bob’s
frame is

ρB
σξ =

∫
dμ(p)Dσν D∗ξλψν(p′)ψ∗λ (p′). (50)

The symmetry of ψ(Λ−1 p) is cylindrical. Hence the partial trace is taken by per-
forming a momentum integration in cylindrical coordinates. This simplification is a
result of the spherical symmetry of the original ψ . The two remaining integrations
are performed by first expanding in powers of p/Δ and taking Gaussian integrals.
Finally,

ρ ′ =
(
ζ 2(1− Γ2/4)+ η2Γ2/4 ζη∗(1− Γ2/4)

ζ ∗η(1− Γ2/4) ζ 2Γ2/4+ η2(1− Γ2/4)

)
. (51)

Fidelity can be used to estimate the difference between the two density matrices.
It is defined as

f = χ †ρ ′χ, (52)

and it is easy to get an analytical result for this quantity. Set ζ = cos θ and η = sin θ .
Then

f = 1− Γ2

2

(
3+ cos 4θ

8

)
. (53)

Consider now a pair of orthogonal states that were prepared by Alice, e.g., the
above state with χ1 = (1, 0) and χ2 = (0, 1). How well can moving Bob distinguish
them? I use the simplest criterion, namely the probability of error PE , defined as
follows: an observer receives a single copy of one of the two known states and
performs any operation permitted by quantum theory in order to decide which state
was supplied. The probability of a wrong answer for an optimal measurement is
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PE (ρ1, ρ2) = 1
2 −

1

4
tr
√

(ρ1 − ρ2)2. (54)

In Alice’s frame PE = 0. In Bob’s frame the reduced density matrices are

ρB
1 =

(
1− Γ2/4 0

0 Γ2/4

)
, ρB

2 =
(

Γ2/4 0
0 1− Γ2/4

)
, (55)

respectively. Hence the probability of error is PE (ρ1, ρ2) = Γ2/4.

3.3 Photons

The relativistic effects in photons are essentially different from those for massive
particles that were discussed above. This is because photons have only two linearly
independent polarization states. As we know, polarization is a secondary variable:
states that correspond to different momenta belong to distinct Hilbert spaces and
cannot be superposed (an expression such as |ε±k 〉 + |ε±q 〉 is meaningless if k �= q).
The complete basis |p, ε±p 〉 does not violate this superselection rule, owing to the
orthogonality of the momentum basis. The reduced density matrix, according to the
usual rules, should be

ρ =
∫

dμ(p)|ψ(p)|2|p,α(p)〉〈p,α(p)|. (56)

However, since ξ in Eq. (29) depends on the photon’s momentum even for ordi-
nary rotations, this object will have no transformation law at all. It is still possible
to define an “effective” density matrix adapted to a specific method of measuring
polarization [30, 31]. I describe one such scheme.

The labeling of polarization states by Euclidean vectors ε±p suggests the use of a
3×3 matrix with entries labeled x , y and z. Classically, they correspond to different
directions of the electric field. For example, a component ρxx would give the expec-
tation values of operators representing the polarization in the x direction, seemingly
irrespective of the particle’s momentum.

To have a momentum-independent polarization is to admit longitudinal photons.
Momentum-independent polarization states thus consist of physical (transverse) and
unphysical (longitudinal) parts, the latter corresponding to a polarization vector
ε
 = p̂. For example, a generalized polarization state along the x-axis is

|x̂〉 = x+(p)|ε+p 〉 + x−(p)|ε−p 〉 + x
(p)|ε

p〉, (57)

where x±(p) = x̂ · ε±p and x
(p) = x̂ · p̂ = sin θ cosφ. It follows that |x+|2+|x−|2+
|x
|2 = 1, and we thus define
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ex (p) = x+(p)ε+p + x−(p)ε−p√
x2+ + x2−

, (58)

as the polarization vector associated with the x direction. It follows from (57) that
〈x̂|x̂〉 = 1 and 〈x̂|ŷ〉 = x̂ · ŷ = 0, and likewise for the other directions, so that

|x̂〉〈x̂| + |ŷ〉〈ŷ| + |ẑ〉〈ẑ| = 1lp, (59)

where 1lp is the unit operator in momentum space.
To the direction x̂ there corresponds a projection operator

Pxx = |x̂〉〈x̂| ⊗ 1lp = |x̂〉〈x̂| ⊗
∫

dμ(k)|p〉〈p| . (60)

The action of Pxx on |Ψ 〉 follows from (57) and 〈ε±p |ε

p〉 = 0. Only the transverse

part of |x̂〉 appears in the expectation value:

〈Ψ |Pxx |Ψ 〉 =
∫

dμ(p)|ψ(p)|2|x+(p)α∗+(p)+ x−(p)α∗−(p)|2. (61)

It is convenient to write the transverse part of |x̂〉 as

|bx (p)〉 ≡ (|ε+p 〉〈ε+p | + |ε−p 〉〈ε−p |)|x̂〉 = x+(p)|ε+p 〉 + x−(p)|ε−p 〉. (62)

Likewise define |by(p)〉 and |bz(p)〉. These three state vectors are neither of unit
length nor mutually orthogonal.

Finally, a POVM element Exx which is the physical part of Pxx , namely is equiv-
alent to Pxx for physical states (without longitudinal photons) is

Exx =
∫

dμ(k)|p,bx (p)〉〈p,bx (p)|, (63)

and likewise for the other directions. The operators Exx , Eyy and Ezz indeed form a
POVM in the space of physical states, owing to (59).

To complete the construction of the density matrix, we introduce additional direc-
tions. Following the standard practice of state reconstruction, we consider Px+z,x+z ,
Px+iz,x+iz and similar combinations. For example,

Px+z,x+z = 1
2 (|x̂〉 + |ẑ〉)(〈x̂| + 〈ẑ|)⊗ 1lp. (64)

The diagonal elements of the new polarization density matrix are defined as

ρmm = 〈Ψ |Emm |Ψ 〉, m = x, y, z, (65)

and the off-diagonal elements are recovered by combinations such as
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ρxz = 〈Ψ (|x̂〉〈ẑ| ⊗ 1lp)|Ψ 〉 = 〈Ψ |Ex+z,x+z − iEx−iz,x−iz + (1− i)(Exx − Ezz)/2|Ψ 〉.
(66)

Denote |x̂〉〈ẑ| ⊗ 1lp as Pxz , and its “physical” part by Exz . Then the effective polar-
ization density matrix is (m, n,= x, y, z):

ρmn = 〈Ψ |Emn|Ψ 〉 =
∫

dμ(k)| f (p)|2〈α(p)|bm(p)〉〈bn(p)|α(p)〉. (67)

It is interesting to note that this derivation gives a direct physical meaning to the
naive definition of a reduced density matrix,

ρnaive
mn =

∫
dμ(p)|φ(p)|2αm(p)α∗n(p) = ρmn . (68)

It is possible to show that this POVM actually corresponds to a simple photodetec-
tion model [32].

The basis states |p, εp〉 are direct products of momentum and polarization.
Owing to the transversality requirement εp·p = 0, they remain direct products under
Lorentz transformations. All the other states have their polarization and momen-
tum degrees of freedom entangled. As a result, if one is restricted to polarization
measurements as described by the above POVM, there do not exist two orthogonal
polarization states. In general, any measurement procedure with finite momentum
sensitivity will lead to the errors in identification, as demonstrated as follows.

Let two states |Φ〉 and |Ψ 〉 be two orthogonal single-photon states. Their reduced
polarization density matrices, ρΦ and ρΨ , respectively, are calculated using (67).
Since the states are entangled, the von Neumann entropies of the reduced density
matrices, S = −tr(ρ ln ρ), are positive. Therefore, both matrices are at least of rank
two. Since the overall dimension is 3, it follows that tr(ρΦρΨ ) > 0 and these states
are not perfectly distinguishable. An immediate corollary is that photon polariza-
tion states cannot be cloned perfectly, because the no-cloning theorem forbids exact
copying of unknown non-orthogonal states.

In general, any measurement procedure with finite-momentum sensitivity will
lead to the errors in identification. First I present some general considerations and
then illustrate them with a simple example. Let us take the z-axis to coincide with
the average direction of propagation so that the mean photon momentum is kAẑ.
Typically, the spread in momentum is small, but not necessarily equal in all direc-
tions. Usually the intensity profile of laser beams has cylindrical symmetry, and we
may assume that Δx ∼ Δy ∼ Δr where the index r means radial. We may also
assume that Δr Δz . We then have

f (p) ∝ f1[(pz − kA)/Δz] f2(pr/Δr ). (69)

We approximate

θ ≈ tan θ ≡ pr/pz ≈ pr/kA. (70)
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In pictorial language, polarization planes for different momenta are tilted by angles
up to ∼ Δr/kA, so that we expect an error probability of the order Δ2

r /k2
A. In the

density matrix ρmn all the elements of the form ρmz should vanish when Δr → 0.
Moreover, if Δz → 0, the non-vanishing xy block goes to the usual (monochro-
matic) polarization density matrix,

ρpure =
⎛
⎝
|α|2 β 0
β∗ 1− |α|2 0
0 0 0

⎞
⎠ . (71)

As an example, consider two states which, if the momentum spread could be
ignored, would be |kAẑ, ε±kA ẑ〉. To simplify the calculations we assume a Gaussian
distribution:

f (p) = Ne−(pz−kA)2/2Δ2
z e−p2

r /2Δ2
r , (72)

where N is a normalization factor and Δz,Δr ! kA. In general the spread in pz

may introduce an additional incoherence into density matrices, in addition to the
effect caused by the transversal spread. However, when all momentum components
carry the same helicity, this spread results in corrections of the higher order. In the
example below we take the polarization components to be ε±p ≡ R(p̂)ε±kS

. That
means we have to analyze the states

|Ψ±〉 =
∫

dμ(p) f (p)|p, ε±p 〉, (73)

where f (p) is given above.
It is enough to expand R(p̂) up to second order in θ . The reduced density matrices

are calculated by techniques similar to those for massive particles, using rotational
symmetry around the z-axis and normalization requirements. At the leading order
in Ω ≡ Δr/kA

ρ+ = 1
2 (1− 1

2Ω2)

⎛
⎝

1 −i 0
i 1 0
0 0 0

⎞
⎠+ 1

2Ω2

⎛
⎝

0 0 0
0 0 0
0 0 1

⎞
⎠ , (74)

and ρ− = ρ∗+. At the same level of precision,

PE (ρ+, ρ−) = Δ2
r /4k2

A. (75)

It is interesting to note that the optimal strategy for distinguishing between these
two states is a polarization measurement in the xy-plane. Then the effective 2 × 2
density matrices are perfectly distinguishable, but there is a probability Ω2/2 that
no photon will be detected at all. The above result is valid due to the special form
of the states that we had chosen. Potential errors in the upper 2 × 2 blocks are
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averaged out in the integration over φ. The effect becomes important when, e.g., a
plane monochromatic wave undergoes a strong focusing. Then Ω ≈ l/ f , where l is
the aperture radius and f is the focal length [32].

Now let us turn to the distinguishability problem from the point of view of a
moving observer, Bob. The probability of an error is still given by (54), but the
parameters depend on the observer’s motion. Assume again that Bob moves along
the z-axis with a velocity v. To calculate Bob’s reduced density matrix, we must
transform the complete state, and then take a partial trace.

Reduced density matrices of |Ψ±〉 in both frames are given by the expression

(ρ±)A,B
mn =

∫
dμ(p)| f (p)A,B |2〈R(p̂)ε±kS

|bm(p)〉〈bn(p)|R(p̂)ε±kS
〉. (76)

This is due to the following two reasons. First, |bm(p)〉 are defined by (62) in any
frame, while pure boosts preserve the orientation of the coordinate axes in 3-space,
and therefore do not affect the indices of ρmn . Second, phases acquired by polar-
ization states cancel out, since we choose the states |p,α(p)〉 to be the helicity
eigenstates.

Calculation of Bob’s density matrix is similar to the previous cases. The only
frame dependent expression in (76) is f B(p) = f A(Λ−1 p). A boost along the z-axis
preserves kr and φ. On the other hand,

k B
z ≈ kA

√
1− v

1+ v
. (77)

Since everything else in the integral remains the same, the effect of relative motion
is given by a substitution

ΩB =
√

1+ v

1− v
ΩA, P B

E =
1+ v

1− v
P A

E , (78)

so Bob can distinguish the signals either better or worse than Alice [30].

Remarks

1. A modification of the spin operator [33] will allow for a momentum-independent
transformation of the spin density matrix between two frames that are related
by a fixed Lorentz transformation Λ12. Its relation to our scheme is discussed
in [34].

2. An additional motivation for introduction of effective polarization density matri-
ces comes from the analysis of one-photon scattering [31].

3. While the effects of the relative motion of Alice and Bob clearly belong to the
realm of a science fiction, the order-of-magnitude estimates for the effect of a
strong focusing [32] should be experimentally observable.
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4. I have discussed only discrete variables. To explore the relativistic effects with
continuous variables [35] it is convenient to express the quantum Lorentz trans-
formations in terms of mode creation and annihilation operators [36].

4 Communication Channels

What happens when Alice and Bob, who are in relative motion, try to communicate?
Assume that they use qubits that were described above. Under a general Lorentz
transformation Λ that relates Alice’s and Bob’s frames, the state of this qubit will
be transformed due to three distinct effects, which are:

(i) A Wigner rotation due to the Lorentz boost Λ, which occurs even for momen-
tum eigenstates. If Λ is known, then to the extent that the wave-packet spread
can be ignored, this is inconsequential.

(ii) A decoherence due to the entangling of spin and momentum under the Lorentz
transformation Λ because the particle is not in a momentum eigenstate. Although
reduced or effective density matrices have no general transformation rule, such
rules can be established for particular classes of experimental procedures. We
can then ask how these effective transformation rules, ρ ′ = T (ρ), fit into the
framework of general state transformations. For example, for the massive qubit
of Sect. 4.2 the effective transformation is given by

ρ ′ = ρ(1− Γ2

4
)+ (σxρσx + σyρσy)

Γ2

8
. (79)

If Λ is known and it is possible to implement the operators that were men-
tioned in the Remark 1 above, then this effect is absent. Otherwise, this noise
is unavoidable. Still, it is worth to keep in mind that the motion can improve
the message fidelity, as in (78).

(iii) Another kind of decoherence arises due to Bob’s lack of knowledge about the
transformation relating his reference frame to Alice’s frame. Using the tech-
niques of the decoherence-free subspaces, it is possible to eliminate this effect
completely. For example, for massive particles four physical qubits may be
used to encode a logical qubit, while for photons 2→ 1 encoding is sufficient.
In both cases using the block encoding it is possible to reach an asymptotically
unit efficiency [37].

Entanglement between the “qubit” and spatial degrees of freedom leads to an
interesting complication of the analysis. It is known [1] that the dynamics of a sub-
system may be not completely positive; there is a prior entanglement with another
system and the dynamics is not factorizable. Since in (78) and in the discussion
following (54) we have seen that distinguishability can be improved, we conclude
that these transformations are not completely positive. The reason is that the Lorentz
transformation acts not only on the “interesting” discrete variables, but also on the
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primary momentum variables that we elected to ignore and to trace out, and its
action on the interesting degrees of freedom depends on the “hidden” primary ones.
Of course, the complete state, with all the variables, transforms unitarily and distin-
guishability is preserved.

This technicality has one important consequence. In quantum information theory
quantum channels are described by completely positive maps that act on qubit states.
Qubits themselves are realized as discrete degrees of freedom of various particles.
If relativistic motion is important, then not only does the vacuum behave as a noisy
quantum channel, but the very representation of a channel by a CP map fails.

5 Entanglement and Different Lorentz Observers

In this section I consider only two-particle states. Even in this simple setting there
are several possible answers to the question what happens to the entanglement,
depending on the details of the question. Since the quantum Lorentz transformation
is given by a tensor product U1(Λ)⊗ U2(Λ), the overall entanglement between the
states is Lorentz-invariant.

Let us assume that the states can be approximated by momentum eigenstates.
Then, the same conclusion applies to the spin–spin (or polarization–polarization)
entanglement between the particles, and it is possible to write an appropriate
entanglement measures that capture the effects of particle statistics and Lorentz-
invariance of the entanglement [24]. However, it does not mean that this invariance
will be observed in an experiment or that the violation of Bell-type inequalities that
is observed in an experiment performed in Alice’s frame will be observed if the
same equipment is placed in Bob’s frame.

While a field-theoretical analysis shows that violations of Bell-type inequalities
are generic, there are conditions that are imposed on the experimental procedures
that are used to detect them. Consider the CHSH inequality. For any two spacelike
separated regions and any pairs of of operators, a, b, there is a state ρ such that
the CHSH inequality is violated, i.e., ζ (a, b, ρ) > 1. With additional technical
assumptions the existence of a maximally violating state ρm can be proved:

ζ (a, b, ρm) =
√

2, (80)

for any spacelike separated regions OL and OR . It follows from convexity arguments
that states that maximally violate Bell inequalities are pure. What are then the oper-
ators that lead to the maximal violation? It was shown [38] that the operators A j and
Bk that give ζ = √2 satisfy A2

j = 1l and A1 A2 + A2 A1 = 0, and likewise for Bk . If
we define A3 := −i[A1, A2]/2, then these three operators have the same algebra as
Pauli spin matrices.

In principle the vacuum state may lead to the maximal violation of Bell-type
inequalities. Their observability was discussed in [40].

The operators [39]
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Ai = 2

[
m

p0
ai +

(
1− m

p0

)
(a · n)n

]
· S ≡ 2α(a,p) · S, (81)

where S is the Wigner spin operator and n = p/|p| appear quite naturally as the
candidates for the measurement description. The length of the auxiliary vector α is

|α| =
√

(p · a)2 + m2

p0
, (82)

so generically A2
i = α21l < 1l, and indeed, the degree of violation decreases with

the velocity of the observer. Nevertheless, it is always possible to compensate for a
Wigner rotation by an appropriate choice of the operators [1].

Realistic situations involve wave packets. For example, a general spin- 1
2 two-

particle state may be written as

|Υ12〉 =
∑
σ1,σ2

∫
dμ(p1)dμ(p2)g(σ1σ2,p1,p2)|p1, σ1; p2, σ2〉. (83)

For particles with well-defined momenta, g sharply peaks at some values p10, p20.
Again, a boost to any Lorentz frame S′ will result in a unitary U (Λ)⊗U (Λ), acting
on each particle separately, thus preserving the entanglement. Nevertheless, since
they can change entanglement between different degrees of freedom of a single par-
ticle, the spin-spin entanglement is frame-dependent as well. Having investigated
the reduced density matrix for |Υ12〉 and made explicit calculations for the case
where g is a Gaussian, as in the Sect. 4.2 above, it is possible to show that if two
particles are maximally entangled in a common (approximate) rest frame (Alice’s
frame), then the concurrence, as seen by a Lorentz-boosted Bob, decreases when
v → 1. Of course, the inverse transformation from Bob to Alice will increase the
concurrence [41]. Thus, we see that the spin–spin entanglement is not a Lorentz
invariant quantity, exactly as spin entropy is not a Lorentz scalar. Relativistic prop-
erties of the polarization entanglement are even more interesting [29], since there is
no frame where polarization and momentum are unentangled.

Remarks

The question if there is entanglement and what happens to it crucially depends on
how we define our subsystems. Consider, e.g., the inequivalent ways to identify
two qubits in a four-state system. One choice may lead to an entangled state, while
another may give zero entanglement. In addition, in our relativistic problem the
choice of subsystems is influenced by the motion of the observer: definitions of spin
involve momenta, and so the state of spin depends on the motion.
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6 Beyond Special Relativity

6.1 Information in Relativistic Physics

Because of the lack of space I am only going to mention the various fascinating
areas of the interplay between quantum information theory and relativistic physics.
Quantum field theory provides us with new situations that should be investigated.
For example, it is possible to ask all the usual questions about entanglement, distill-
ability, etc., and their invariance[1, 42–44]. So far we discussed only observers that
move with constant velocity. An accelerated observer sees Unruh radiation. It leads
to a host of interesting effects if we consider a teleportation between a stationary
and accelerated observer [45–47]. Dynamical entanglement—the one appearing in
the scattering processes or between the decay products—also has been investigated
[25, 48, 49].

Going to more exotic settings, I just mention that black hole physics [1, 50–53]
and cosmology [54–56], either from the point of view of loop quantum gravity or
string theory, provide extremely interesting scenarios where the questions of infor-
mation can and should be asked.

As a teaser, I would like to show how very simple considerations (only slightly
more sophisticated than a single CNOT gate) help to select possible candidates for
quantum causal histories [57].

6.2 CNOT and Quantum Causal Histories

The quest for a quantum theory of gravity produced a variety of approaches that
include string theory, loop quantum gravity, spin foams, causal sets, and causal
dynamical triangulations. The successful theory has to provide a coherent structure
that accommodates both classical relativity and quantum mechanics. In some appro-
priate limit it should produce the familiar physical phenomena on the flat spacetime
background and make predictions on the kind and magnitude of the departures from
this picture.

Those goals have not yet been achieved by any of the approaches, but these
attempts have brought many insights and led to a better understanding of the prob-
lem’s complexity. Quantum causal histories (QCHs) approach [58] to the quanti-
zation of gravity is a background-independent formalism that satisfies many of the
conditions that are argued for by the above models. The idea is to use a causal set to
describe the casual structure while a quantum theory being introduced through the
assignment of finite-dimensional Hilbert spaces to the elementary events. Originally
motivated by quantum cosmology, and providing a description of the causal spin
foam models, QCHs make a direct contact with quantum information theory.

To apply the quantum-informational considerations I have to begin with a brief
outline of QCHs in the Hilbert space language, roughly following [58]. If a space-
time is time-orientable and has no closed timelike curves, then its causal structure



244 D.R. Terno

can be completely described as a partial order relation on its points. The relation
x * y is defined if there exists a future-directed non-spacelike curve from x to
y. It is transitive, and the absence of CTCs means that x * y and y * x are
simultaneously true if and only if x = y. Those two conditions make the relation
“*” into a partial order.

A discrete analogue of a smooth chronology-respecting spacetime is a causal set
C, which is a locally finite and partially ordered set. That is, for any two events
x, y ∈ C, there exist (at most) finitely many events z ∈ C such that x * z * y. If
the events x and y are not related, i.e., neither x * y nor y * x holds, then they
are spacelike separated, this fact being denoted as x ∼ y. An acausal set is a subset
ξ ∈ C such that all events in it are spacelike separated from one another. Then the
maximal acausal sets are the discrete analogues of spacelike hypersurfaces.

A causal set can be represented by a directed graph of elementary relations, as
in Fig. 3. Its vertices are the points of C, while the edges x → y represent the
elementary causal relations, namely x * y without any intermediate z such that
x * z * y.

A future-directed path is a sequence of events such that there exists an edge
from each event to the next. It is an analogue of a future-directed non-spacelike
curve. A future-directed path is future (past) inextendible if there exists no event
in C which is in the future (past) of the entire path. Then one can define complete
future and complete past of an event. An acausal set ξ is a complete future of an
event x if ξ intersects any future-inextendible future-directed path that starts at x ,
and a complete past is defined similarly. If an acausal set ζ is a complete future of
an acausal set ξ and at the same time the set ξ is a complete past of ζ , then the
sets form a complete pair, ξ * ζ . The resulting structure is a discrete, locally finite,
causal pre-spacetime.

A local quantum structure on it is introduced by attaching a finite-dimensional
Hilbert space H(x) to every event x ∈ C. For only two spacelike separated events
x and y the composite state space is H(x, y) = H(x) ⊗ H(y), with an obvious
generalization to larger sets. In ordinary quantum mechanics (of closed systems)
time evolution is a unitary map of Hilbert spaces. In a QCH approach one introduces
a unitary evolution between complete pairs of acausal sets ξ and ζ , where, e.g., ζ
is the complete future of ξ , ξ * ζ . One can think of a complete pair as successive
Cauchy surfaces of an isolated component of spacetime, or of all spacetime, with a
unitary map U relating H(ξ ) and H(ζ ).

x y

u z

x y

u z

x y

u z

Fig. 3 Three possible causal histories
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Hence a QCH consists of a causal set C, a finite-dimensional Hilbert space H(x)
at every x ∈ C and a unitary map

U (ξ, ζ ) : H(ξ )→ H(ζ ), (84)

for any complete pair ξ * ζ . The maps have a natural composition property

U (ς, ζ )U (ξ, ς ) = U (ξ, ζ ), for ξ * ς * ζ. (85)

Different possible causal relations between complete sets are shown in Fig. 3.
Note that the precise meaning of arrows in the relation x * y is as follows.

For x ∈ ξ and y ∈ ζ the existence of U (ξ, ζ ) implies that if there is no future-
directed path between x and y, i.e., x ∼ y, then the reduced final state on H(y),
ρ

ζ
y = tr ζ\yρζ = tr ζ\yUρξU † is independent of the initial reduced state ρ

ξ
x .

In the example I deal with here it is possible to identify the initial and final Hilbert
spaces pointwise: in Fig. 3 we assume that dx ≡ dimH(x) = du ≡ dimH(u), etc.
A general case is considered in [57].

Consider three possible causal relations that are shown in Fig. 3. Despite its intu-
itive appeal the causal history (a) is incompatible with the definition (84). It can be
observed on a simple example of two qubits. Label the basis of each of the spaces
by |0〉, |1〉. The CNOT gate [2] apparently fits the described scheme: the value of
the qubit x remains the same, while the qubit y may be flipped. However, a textbook
exercise shows that in the basis |±〉 = (|0〉 ± |1〉)/√2, the roles of the source and
the target bits are reversed.

Table 1 CNOT gate

|ψ〉 U |ψ〉 |ψ〉 U |ψ〉
00 00 ++ ++
01 01 −+ −+
10 11 +− −−
11 10 −− +−

In general, if an operation on H(y) is controlled by the state on H(x) which
remains unchanged,

U (|ψ〉 ⊗ |φ〉) = |ψ〉 ⊗ Vψ |φ〉, (86)

for all states |φ〉, then it is actually independent of |ψ〉, Vψ ≡ V . Indeed, consider
two possible initial states |ψ〉|φ〉 and |ψ ′〉|φ〉. Their overlap is preserved under U ,
hence

〈φ|V †
ψ Vψ ′ |φ〉 = 1, (87)

for an arbitrary state |φ〉. Hence Vψ = Vψ ′ .
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As a result, only the second and the third histories of Fig. 3 are consistent with
the existence of an arbitrary unitary evolution on causal sets. The alternative is to
introduce an external (classical) observer who is restricted to do measurements in
a (given) particular basis, say (0,1) as in the above example. The CNOT example
shows that the observer will prescribe different causal relations depending on its
choice of measurement basis. Then, by restricting the allowed unitary evolutions
between the complete sets, the asymmetric causal structure is made compatible with
quantum mechanics.

Adhering to the latter option is not only too restrictive, but not always possible.
Consider the projectors P0 and P1, P0 + P1 = 1l, on the singlet (spin-0) and triplet
(spin-1) states. Then for generic values of the parameters α, β there is no basis in
which the unitary

U = eiα P0 + eiβ P1, (88)

can be represented as in (86). This particular set of unitary operators is relevant to
computational universe models and to loop quantum gravity.

More complicated causal structures can be analyzed in the same spirit. Moreover,
it is possible to prove the following general theorem.

Theorem 1 A discrete, locally finite, causal pre-spacetime structure admits a uni-
tary evolution between its acausal surfaces if and only if it can be represented as a
quantum computational network.
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